
ibm.com/redbooks

Best Practices for IBM Tivoli
Enterprise Console to
Netcool/OMNIbus Upgrade

Dietger Bahn
Richard Fowkes

Raffaella Nicolosi
Wolfgang Schumacher

Ilda Yaguinuma

Integration and upgrade strategies for
TEC-based environments

Provides detailed guidelines for
planning an upgrade

Includes upgrade scenarios and
best practice recommendations

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Best Practices for IBM Tivoli Enterprise Console to
Netcool/OMNIbus Upgrade

August 2008

International Technical Support Organization

SG24-7557-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2008)

This edition applies to IBM Tivoli Netcool/OMNIbus Version 7.2.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiv
Acknowledgements . xv
Become a published author . xvi
Comments welcome. xvi

Part 1. Overview . 1

Chapter 1. Introduction . 3
1.1 IBM Service . 4
1.2 Netcool/OMNIbus . 6
1.3 Tivoli Enterprise Console customer choices . 7
1.4 Product review. 8

1.4.1 Event management . 8
1.4.2 Event sources . 9
1.4.3 Event visualization . 11
1.4.4 Product administration and configuration . 15
1.4.5 Integration with other products . 20
1.4.6 Netcool/OMNIbus . 22

1.5 Benefits of upgrading to Netcool/OMNIbus . 23
1.5.1 Scalability and performance . 23
1.5.2 Consolidation . 25
1.5.3 Ease of use . 26
1.5.4 Reliability . 26
1.5.5 Enhanced event visualization and management. 28
1.5.6 Enhanced event enrichment . 32
1.5.7 Security . 33
1.5.8 IBM product strategy . 36

Chapter 2. Architecture. 37
2.1 Tivoli Enterprise Console architecture. 38

2.1.1 Typical installation. 38
2.1.2 Describing TEC components . 41
2.1.3 Complex scenarios . 50
2.1.4 TEC integration . 54

© Copyright IBM Corp. 2008. All rights reserved. iii

2.2 IBM Tivoli Netcool/OMNIbus architecture . 60
2.2.1 Architecture introduction . 60
2.2.2 Architecture overview . 62
2.2.3 Component description . 62
2.2.4 Probes. 78
2.2.5 Monitors . 87
2.2.6 Gateways . 87
2.2.7 Netcool/Webtop. 91
2.2.8 Netcool GUI Foundation . 92
2.2.9 Typical Netcool/OMNIbus deployment . 94
2.2.10 Two-tiered architecture . 95
2.2.11 Three-tiered architecture. 96
2.2.12 Firewall considerations . 98
2.2.13 Configuring hardware for performance . 99
2.2.14 Netcool/OMNIbus rules: best practices for performance 100

Part 2. Strategies. 101

Chapter 3. TEC environmental assessment and planning guidelines . . 103
3.1 End-to-end event flow . 104
3.2 Event source hosts . 106

3.2.1 Tivoli framework commands . 106
3.2.2 Non-framework commands . 107
3.2.3 Other techniques. 107
3.2.4 Safety net . 108

3.3 TEC source types . 108
3.3.1 IBM Tivoli Monitoring event sources . 109
3.3.2 Omegamon agent sources . 110
3.3.3 NetView event sources . 110
3.3.4 NetView forwarding to OMNIbus options . 110
3.3.5 Windows event log messages. 113
3.3.6 UNIX and Linux syslog messages . 114
3.3.7 Logfile messages . 114
3.3.8 SNMP traps. 114
3.3.9 AS400 messages . 114
3.3.10 Command line sources (w)postemsg and (w)postzmsg 115
3.3.11 Custom EIF applications . 115
3.3.12 Tivoli Business Systems Manager (TBSM 3.1) 116

3.4 Other planning considerations. 116
3.4.1 Deployment considerations. 116
3.4.2 Scoping volumes and throughput of events 120
3.4.3 Coping with event storms . 121
3.4.4 TCP/IP port usage. 121

iv Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3.4.5 EIF probe considerations . 122
3.4.6 Adapter configuration files and gateway configuration files 122

3.5 Distributed event processing . 123
3.5.1 Formatting . 123
3.5.2 Filtering . 125
3.5.3 State correlation engine (SCE) processing 125

3.6 BAROC file definitions. 126
3.7 Central event processing (TEC rules) . 127

3.7.1 Frequently used rules . 128
3.7.2 Typical rule types . 128
3.7.3 Remote procedure execution . 128

3.8 Some event-processing examples . 129
3.8.1 General suggestions . 130
3.8.2 Handling of duplicate events . 130
3.8.3 Filtering out events with specific content. 131
3.8.4 Actions for too many events in a defined time frame 131
3.8.5 Filling an attribute dependent on another field’s content. 132
3.8.6 Handling of correlations (cause, effect, and clearing events) 133
3.8.7 Local and remote script execution . 133
3.8.8 Escalation of the severity of events. 133
3.8.9 Forwarding of events. 134

3.9 TEC outputs . 134
3.9.1 TEC tasks . 135
3.9.2 Forwarding to other TEC servers (manager of managers) 135
3.9.3 Incident management systems . 135
3.9.4 Service-level reporting and auditing databases 136

3.10 Desktop upgrade (TEC console) . 136
3.11 Event view customization . 138

3.11.1 TEC information button . 138
3.11.2 TEC custom buttons . 138
3.11.3 Large event messages (greater than 255 characters) 139
3.11.4 Operator actions . 139
3.11.5 Color patterns . 141

3.12 Resource considerations skills . 141
3.12.1 Event-processing configuration. 141
3.12.2 Installation, administration, and operations. 142

 Contents v

3.13 Checklist . 143
3.14 Suggested testing plan . 144

Chapter 4. Upgrade strategies . 147
4.1 Event flow integration based on TEC . 149
4.2 Event flow integration based on OMNIbus . 151
4.3 TEC replacement strategy. 152

4.3.1 Event flow . 152
4.3.2 Advantages . 153
4.3.3 Disadvantages . 153
4.3.4 Which scenarios this applies to. 153

4.4 TEC to OMNIbus upgrade. 154
4.4.1 Event flow . 154
4.4.2 Advantages . 155
4.4.3 Disadvantages . 155
4.4.4 Who this applies to . 155

4.5 The recommended strategy . 156

Part 3. Implementation . 163

Chapter 5. Upgrading to an IBM Tivoli Netcool environment 165
5.1 Tivoli Enterprise Console prior to upgrade . 166

5.1.1 Installed TEC components . 166
5.1.2 TEC installation and configuration . 168

5.2 Netcool/OMNIbus lab environment . 168
5.2.1 AIX lab environment for Netcool/OMNIbus 169
5.2.2 Red Hat environment for Netcool/OMNIbus 170

5.3 Netcool/OMNIbus installation . 171
5.4 IBM Tivoli Netcool/OMNIbus configuration . 171

5.4.1 ObjectServer database initialization . 171
5.4.2 ObjectServer interfaces omni.dat . 172
5.4.3 Interfaces file generation. 173
5.4.4 ObjectServer properties configuration. 174
5.4.5 Process Automation configuration . 175
5.4.6 ObjectServer startup . 179
5.4.7 ObjectServer shutdown. 180

5.5 IBM Tivoli Netcool probe installation overview . 181
5.5.1 What you need to know about nco_patch . 181
5.5.2 Toggle feature for process control . 181
5.5.3 Installation of probe for Windows NT event logs. 183
5.5.4 Check the probe installation . 184
5.5.5 Netcool probe configuration . 185

vi Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5.6 Installing Netcool Security Manager and Netcool Webtop 185

Chapter 6. Event processing . 187
6.1 Differences between TEC and OMNIbus . 188

6.1.1 Resolving of events. 188
6.1.2 Processing of events. 188

6.2 Event processing migration . 189
6.2.1 General suggestions . 190
6.2.2 Lab environment . 191
6.2.3 Handling of duplicate events . 194
6.2.4 Filtering out events with specific content. 197
6.2.5 Actions for too many events in a defined time frame 206
6.2.6 Filling an attribute dependent on another field’s content. 209
6.2.7 Handling of cause, effect, and clearing events 215
6.2.8 Propagating status change from cause to effect events 225
6.2.9 Local and remote script execution . 228
6.2.10 Escalation of event severity . 235
6.2.11 Forwarding of events. 238
6.2.12 Use of external information for logic control 238

6.3 Probe topics . 242
6.3.1 Measuring load and numbers of events in a time frame 242
6.3.2 Self monitoring . 243
6.3.3 Parsing failed . 243
6.3.4 EIF rules file and extended attributes . 244

6.4 Support of TEC class hierarchy. 247
6.5 TEC information/URL information for events. 256

6.5.1 Rule best practices for performance . 273
6.5.2 Debugging using Netcool IDE . 273
6.5.3 Netcool Knowledge Library . 274

Chapter 7. Configuring the event sources . 277
7.1 Adding a rule to forward raw events to OMNIbus 278
7.2 Integration between Netcool/OMNIbus and Tivoli NetView. 280

7.2.1 Netcool/OMNIbus 7.2 and Tivoli NetView integration overview . . . 281
7.2.2 Installing Netcool/OMNIbus probe for Tivoli EIF 282
7.2.3 Configuring OMNIbus ObjectServer . 282
7.2.4 Configuring the Tivoli EIF probe . 283
7.2.5 Configuring the NetView TEC adapter to send to the EIF probe . . 283
7.2.6 Automatic event management customization 284

7.3 Integration between Netcool/OMNIbus and IBM Tivoli Monitoring 290
7.3.1 Netcool/OMNIbus 7.2 and IBM Tivoli Monitoring 6.2 integration . . 291
7.3.2 Installing Netcool/OMNIbus probe for Tivoli EIF 292
7.3.3 Installing event synchronization . 292

 Contents vii

7.3.4 Configuring the OMNIbus server. 306
7.3.5 Configuring the monitoring server . 311

7.4 Deduplication configuration . 320
7.5 Migrating the TEC Windows event log adapter . 322

7.5.1 Installing and configuring the Windows NT Event Log probe 323
7.5.2 Installing and configuring the process agent on Windows 340

7.6 Syslog probe event configuration . 357
7.7 Completed upgrade. 360
7.8 Troubleshooting the event flow . 361

Part 4. Appendixes . 365

Appendix A. Lab configuration . 367
TEC installation steps. 368
TEC event source generation commands and scripts 372
Netcool/OMNIbus directory structure reference . 374
IBM Tivoli Netcool default port usage. 375

IBM Tivoli Netcool/OMNIbus . 375
IBM Tivoli Netcool Security Manager . 375
IBM Tivoli Netcool/Webtop . 376
IBM Tivoli Netcool probes . 376

User profile . 377
Netcool Process Automation startup script . 377
ObjectServer WEIMAR_PA Process Automation configuration 379
ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView) 382
ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView, ITM) . . 388

Appendix B. Additional material . 399
Locating the Web material . 399
Using the Web material . 400

How to use the Web material . 400

viii Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Related publications . 401
IBM Redbooks . 401
Online resources . 401
Tivoli Netcool/OMNIbus technical information . 403

Release notes . 403
Installation and deployment guide. 403
Administration guide . 403
User guide. 404
Probe and gateway guide . 404
IBM Tivoli Netcool/Security Manager . 405
IBM Tivoli Netcool/Webtop . 405
IBM Tivoli Netcool GUI Foundation. 405

IBM Tivoli Netcool tools and utilities. 406
Using IBM Tivoli Include Library . 406
Global Advanced Technology team tools and utilities. 406

How to get Redbooks . 407
Help from IBM . 408
RSS feed list. 408

Index . 415

 Contents ix

x Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. These and other
IBM trademarked terms are marked on their first occurrence in this information with the
appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM
at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Alerts®
AS/400®
Candle®
DB2®
IBM®
Informix®
Maximo®

Micromuse®
Netcool/OMNIbus™
Netcool®
NetView®
OS/2®
OS/390®
Proviso®
Redbooks®

Redbooks (logo) ®
System p™
Tivoli Enterprise Console®
Tivoli®
TME®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library, IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government Commerce.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Java, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Sybase is a trademark of Sybase, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://www.ibm.com/legal/copytrade.shtml

Preface

The acquisition of Micromuse® Inc. brings new opportunities for all involved in
IBM® Systems Management discipline, and the development of a new and
exciting strategy.

This IBM Redbooks® publication should be used when planning and
implementing an integration and upgrade strategy from TEC to OMNIbus. In this
book we provide recommended best practices and describe strategies for
upgrading existing installations in a way that should best suit the needs of
existing TEC-based environments.

The audience for this book is anyone involved in the Systems Management
discipline, but it applies primarily to both those with a Tivoli® or Netcool®
background, and is aimed at customers with an existing Tivoli Enterprise
Console® investment who are looking to evaluate the comparative
characteristics of TEC and Netcool/OMNIbus™, so that they can perform a
system upgrade.

Depending on the complexity of the existing environment and the depth of the
requirements, this upgrade could be a significant project, but we aim with this
book to make it as straightforward and as successful as possible.

We have structured the book to first introduce a quick overview of the products,
highlighting the key benefits of Netcool/OMNIbus so that both audiences can
become familiar with the different concepts. Then the architectures of both
products are discussed in more detail, concluding with some typical scenarios.

Part 2, “Strategies” on page 101, reviews planning and strategy. It begins with
detailed guidelines on assessing the existing customer environment in order to
identify how TEC is currently deployed. We discuss considerations to make and
how to plan the activities required to upgrade. Then different upgrade scenarios
are presented with a best practice recommendation that the reader can adapt to
his environment.

At this point we would like to stress that this book builds on the utilities provided
by the Tivoli and Netcool Integration Event Flow package (downloadable from
the IBM OPAL Web site), and the recommendations from the Tivoli & Netcool
Event Flow Integration white paper. The main distinction is that they cover
various event integration scenarios, whereas we, in addition, map out a
complete upgrade path to OMNIbus in our recommended strategy.

© Copyright IBM Corp. 2008. All rights reserved. xiii

The implementation of the suggested strategy is then covered in Chapter 7,
“Configuring the event sources” on page 277. We describe in detail the steps
required to achieve the upgrade with the core components, and discuss other
tasks to also keep in mind. A wide range of different rule processing examples
are provided, giving comparative and practical guidance, providing a valuable
asset for the rule programmer.

Finally, additional technical details on configurations and scripts used and other
valuable references can be found in Appendix A, “Lab configuration” on
page 367.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Dietger Bahn is a Systems Management Specialist at the IBM Software Group,
Tivoli Services in Germany, and specializes in IBM Tivoli Netcool product line.
His areas of expertise also include a Proof-of-Technology about IBM Tivoli
Netcool and integrations at the IBM Technical Marketing Competence Center
Europe (TMCC), also used in the IBM Tivoli Integrated Demo Environment
(TIDE), with 10 years of experience in Systems Management and technical
administration of UNIX® family operating systems including high availability
environments. He worked for three years as a Support Specialist at the IBM
EMEA Techline pre-sales and post-sales support for Tivoli and Systems
Management solutions. Before joining IBM, he worked for seven years as an IT
Specialist for UNIX systems administration. Dietger is ITIL® certified and
continuative qualified in service-oriented troubleshooting.

Richard Fowkes is a Senior accredited Product Services Professional, and
Team Leader for the Maintenance and Technical Services Tivoli support team
based in the UK, which supports customers in UKISA and the Nordic countries.
He has provided technical support for a wide range of Tivoli products at IBM for
the last nine years and has over 20 years of experience in the Systems
Management field. He holds a degree in business studies and is currently a staff
member of the UKISA Technical Council. His areas of expertise include Tivoli
Framework, Enterprise Console, NetView® and Workload Scheduler, and
generic troubleshooting. He has co-written and taught the Advanced Problem
Investigation Principles course.

Raffaella Nicolosi works for IBM Italia in Global Response Team EMEA, helping
customers resolve critical situations. She earned a degree in Computer Science
in 2005 and began working for IBM Italia in 2006. Her areas of expertise in the
IBM portfolio include the Netcool suite and its related products such as

xiv Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

OMNIbus, Webtop, Impact, Tivoli Business Service Manager 4.1, Tivoli Network
Manager IP Edition, and Proviso®. Her areas of expertise include TCP/IP
Networks, operating systems, human and computer interaction, and Java™
programming.

Wolfgang Schumacher is a Tivoli Certified Consultant and Tivoli Certified
Instructor at ACT AG in Niederkassel, Germany. He is also Germany's
representative to the Global Tivoli User Group. He has 26 years of experience in
the Systems Management field. His experience includes the project
management, architecture, implementation, and performance measurement of
Systems Management and networking solutions for distributed and mainframe
environments using IBM, Tivoli, and OEM products. His areas of expertise
include IBM Tivoli Enterprise Console rule writing and developing automation for
IBM Netcool OMNIbus solutions.

Ilda Yaguinuma is an IT Specialist at Server Systems Operations in IBM Brazil.
She has been working at IBM since 1993. She supports SNA architecture and
NetView family products on the mainframe platform. She has moved to the
distributed platform since the Tivoli acquisition. She has worked on several
projects, designing and implementing Tivoli core products. She has written about
TEC architecture and OMNIbus/ITM integration.

Production of this book was managed by
Chris Almond, an ITSO Project Leader and IT Architect based at the ITSO
Center in Austin, Texas. In his current role, he specializes in managing content
development projects focused on Linux®, System p™, and AIX®, various IBM
Software Group products, and innovation programs. He has a total of 17 years of
IT industry experience, including the last 9 with IBM.

Acknowledgements

Thanks to the following people for their contributions to this project:

Special thanks to Elise Kushner of ACT AG, Germany, whose many years of
TEC experience are reflected in Chapter 6, “Event processing” on page 187.

Special thanks to Christian Michaelski of ACT AG, Germany, who provided the
the perl script tec_help.pl and the corresponding files.

Special thanks to Fabrizio Salustri of IBM Italia and Ana Paula Godoy of IBM
Brazil. They gave us a much help in the development of the integration between
OMNIbus and ITM, sharing with us their ITM 6.2 lab environment, their best
skills, and their friendship.

 Preface xv

Chris Almond - our Project Leader, Don Wildman - Product Manager for
Netcool/OMNIbus, Tracey McWilliams - Netcool Senior Technical Support
Engineer, Kristian Stewart - Engineering Management Netcool/OMNIbus,
Stephen Brocklesby - Tivoli Systems Management consultant, Dave Scarr - TEC
L2 Support, Jimmy Gholston and the TEC L2 support team in the US, Stephen
Cook - Engineering Management Netcool/OMNIbus, Joerg Weikopf - Tivoli
Technical Sales, Kai Preuss - Tivoli Netcool Technical Sales, Carsten Otto -
Tivoli Netcool Technical sales, Ingo Averdunk - Principle Consultant, and, last
but not least, Arzu Gucer, Lupe Brown, and Bill Trimble for smoothing over all of
our administrative tasks and making sure that our stay in Austin during this
project was most enjoyable.

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

xvi Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xvii

xviii Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Part 1 Overview

We begin this book with an introductory chapter that provides an overview of the
IBM Service Management product portfolio now that it includes the recently
acquired IBM Tivoli Netcool monitoring solutions, and in particular,
Netcool/OMNIbus.

In this part we also include a chapter that provides a detailed technical
comparison between the TEC and OMNIbus product architectures. This part
contains the following chapters:

� Chapter 1, “Introduction” on page 3
� Chapter 2, “Architecture” on page 37

Part 1

© Copyright IBM Corp. 2008. All rights reserved. 1

2 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 1. Introduction

The IBM acquisition of Micromuse Inc. on February 14, 2006, marked a major
milestone for IBM Tivoli software because it significantly strengthened the
product offerings in the end-to-end IBM Service Management portfolio. Existing
Tivoli Enterprise Console customers can now gain extra benefits by discovering
and exploiting the enhanced features of Netcool/OMNIbus and of the other
products of the Netcool suite.

This book is intended primarily as a detailed technical guide for customers who
want to know more about these benefits, and as a how-to guide for a
step-by-step setup of an upgraded environment that fully exploits the many
advantages of the IBM Tivoli Netcool monitoring solution.

1

© Copyright IBM Corp. 2008. All rights reserved. 3

1.1 IBM Service

Today, network and IT operations are under tremendous pressures to deliver
new, next-generation services more quickly than ever before. At the same time,
lines of business (LOBs) and customers demand more services and service-level
agreements (SLAs) to ensure that they receive the service quality that they
expect. These challenges are further compounded through increased regulatory
and audit requirements that often require budget and labor shifts from more
strategic growth initiatives.

By combining the Netcool and Tivoli portfolios, IBM enables customers to take a
more comprehensive approach to aligning operations and processes with their
organization’s business needs—an approach that leverages best practices such
as those of the IT Infrastructure Library® (ITIL) and the NGOSS Business
Process Framework of the TMForum enhanced Telecom Operations Map
(eTOM). IBM calls this approach IBM Service Management (Figure 1-1).

Figure 1-1 IBM Service Management

IBM Service Management includes a uniquely broad and modular set of
capabilities that help customers better manage their business.

As organizations evolve from silo-centric to service-centric operations, they need
to develop a common manager-of-managers view that integrates various
monitoring tools across multiple management domains, including distributed data

IBM Service Management

Service Management Platform

Best Practices, Methodologies, and Services

Visibility Control Automation

Datacenter
Transformation

Service
Availability &
Performance
Management

Asset &
Financial

Management

Service
Delivery &
Process

Automation

Network
& Service
Assurance

Storage
Management

Security, Risk
& Compliance

4 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

centers, network operations centers (NOCs), security operations centers
(SOCs), and other areas.

With IBM, organizations can gain accurate, timely, and deep visibility across
operational silos, tools, and staff—without ripping and replacing existing tools
and processes. Even better, IBM Consolidated Operations Management
solutions at the heart of a comprehensive Service Management solution can
leverage and integrate with hundreds of IBM and third-party tools for discovery,
monitoring, event management, provisioning and service desk support, as well
as change and configuration management databases (CMDBs).

The result is a powerful yet flexible solution to help quickly and easily identify and
resolve problems, streamline operations, and meet the rigorous, complex service
demands of today.

By joining the Tivoli leadership and experience managing data center
environments with those of Netcool in the network operations center, IBM
enables customers to benefit from fully integrated management software that
shares event and performance management, visualization, and automated
workflow capabilities across the enterprise. The combined Netcool and Tivoli
portfolio will help users manage any data related to infrastructure elements such
as networks, systems, security devices, storage components, and applications to
gain full visibility into the health and performance of infrastructure-dependent
services.

IBM is as committed to Netcool customers and products as it is to customers who
have invested in Tivoli solutions. The company's strategy is to enable all Netcool
and Tivoli users to protect, optimize, and extend their investments in the
combined product portfolio.

� Protect: IBM seeks to protect customer investments of not only resources,
but also knowledge accumulated over years of building ever more advanced
IT operations infrastructures. As the Netcool and Tivoli product portfolios
converge, IBM intends to provide smooth upgrade paths that facilitate
adoption of the best capabilities across the combined portfolio while
preserving and unlocking customers' knowledge investments.

� Optimize: IBM is helping customers leverage expanded capabilities today,
even as work progresses toward the converged Tivoli portfolio. In product
categories where the combined portfolio capabilities overlap, customers can
trade up to the more feature-rich product in the category.

� Extend: Whether a customer currently uses Netcool products, Tivoli products,
or both, the combined portfolio offers many additional products and
capabilities that the organization can leverage.

 Chapter 1. Introduction 5

Specifically, the Netcool portfolio offers Tivoli users a wide range of capabilities
for security operations management, performance management, and network
management. The Netcool portfolio further extends the Tivoli portfolio with
next-generation management solutions for telecommunications infrastructures.

IBM is dedicated to every customer's success. As the company works to deliver
a converged portfolio, it is taking numerous steps to enable the investments that
customers have made in IBM and Micromuse products over the years to
continue to benefit their organizations. Furthermore, the smooth upgrade paths
that IBM is putting into place are meant to help customers derive even greater
value from these investments moving forward.

1.2 Netcool/OMNIbus

IBM Tivoli Netcool/OMNIbus, with its Netcool/Webtop user interface, is the
cornerstone of the IBM Tivoli Consolidated Operations Management solution.
Netcool/OMNIbus is the heart of the Netcool product suite. It delivers real-time,
centralized monitoring of complex networks and IT domains. With event
processing scalability that can exceed over 100 million events per day,
Netcool/OMNIbus offers round-the-clock management and automation to help
customers deliver continuous uptime of business services and applications,
optimize operations costs and efficiency, and improve time to market.

Netcool/OMNIbus includes over two hundred out-of-the-box probes (and more
than 25 vendor alliances) that enable it to include events from virtually any
management system or device in your Network and IT environment.

� Leader in Gartner Magic Quadrant and OSS Observer 2008 for both
Enterprise and Service Provider markets

� Unique manager-of-manager capabilities for reduced operational expense

� Depth and breadth of event coverage and correlation

� Software failover for highly available consolidated operations management

� Event-processing efficiency resulting in cost savings and unmatched
scalability

– A single OMNIbus server can handle the event-processing workload of
several servers using competitive offerings.

– OMNIbus solutions can be scaled to handle greater than 50 million events
per day, yet scale down to small and medium business environments.

Leading service providers use Netcool/OMNIbus to manage their complex
networks and applications in real time, helping optimize the availability of fixed

6 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

and wireless services. The software management helps accelerate time to
market of new services and maximize network reliability to enhance customer
satisfaction and improve operator efficiency.

Leading enterprises rely on Netcool/OMNIbus to consolidate the management of
networks and multiple management systems and tools under a single pane of
glass view. The software helps make it easier for enterprises to manage
problems across large heterogeneous networks and IT silos, and thereby reduce
costs and improve overall productivity.

Environments supported by Netcool/OMNIbus software include a vast array of
network devices, Internet protocols, systems, business applications, and security
devices. Because the software offers breadth of coverage, rapid deployment,
ease of use, and exceptional scalability and performance, enterprises and
service providers worldwide can leverage the Netcool/OMNIbus suite to manage
the world’s largest, most complex environments.

Many customers use Netcool/OMNIbus to manage tens of millions of events
daily. Furthermore, the software can be deployed in a distributed, parallel, or
hierarchical fashion to support complex operations environments that span
diverse geographic boundaries. Because it couples scalability with a flexible
architecture, the software can deliver robust event management to support
environments of any size.

1.3 Tivoli Enterprise Console customer choices

While significant focus is being placed on enhancing the ease of installation and
use of upcoming versions of Netcool/OMNIbus, IBM will continue to protect our
Tivoli Enterprise Console customers’ investments and intends to provide a
smooth upgrade path to Netcool/OMNIbus. Customers who do not yet need the
enhanced event management and enrichment features offered by OMNIbus, and
who are concerned about disrupting their environment, can continue to use Tivoli
Enterprise Console as the main application for monitoring, and eventually set up
an OMNIbus environment for test purposes. In this way they will be able to get
acquainted with the enhanced event management and enrichment features,
extra scalability, and performance provided by Netcool/OMNIbus. Customers
who have an immediate need for these additional capabilities offered by
OMNIbus can upgrade immediately.

 Chapter 1. Introduction 7

1.4 Product review

In this section we discuss the major features of Tivoli Enterprise Console (TEC)
and match them with the equivalent Netcool/OMNIbus features. This will give
you a good idea of how your current system management functionality can be
provided with Netcool/OMNIbus. The features and capabilities discussed are:

� Event management
� Event sources
� Event visualization
� Product administration and configuration
� Integration with other products

1.4.1 Event management

This section provides an overview of how events are managed within Tivoli
Enterprise Console, followed by a comparison with Netcool/OMNIbus.

The Tivoli Enterprise Console is a rule-based event management application that
manages events coming from many different sources. Each source has defined
formats and slot definitions that are preloaded into the TEC configuration for use
by the reception engine. These formatted events are stored in a relational
database table (the reception log). A linear sequence of rules is built to process
the incoming event, and these rules are loaded by the TEC start process. The
rules can be complex, correlating the upcoming event against many existing
cached events. After processing, the event is stored in further TEC database
tables. A set of default rulesets is supplied with TEC to aid startup. TEC rules can
start external procedures to call resources managed by the Tivoli Framework.
The TEC console can be configured to display events logically grouped
according to administration needs.

Tivoli Enterprise Console
In TEC, each source is configured with its own slot format and definition. The slot
format and definitions are loaded into the TEC configuration, so this information
can be mapped into the TEC environment. Once an event reaches the TEC
reception log, this information is stored in the TEC database table. Then the rules
engine is able to start processing the event. A linear sequence of rules is
structured to handle the event. These rules are loaded in the TEC start process.
The rules can be very complex, analyzing the incoming event and comparing it
other events already stored. After event processing, the event is stored into
another TEC database table.

The correlation of different types of events can be programmed. A set of default
rulesets is deployed with TEC (for example, network up/down events that are

8 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

automatically closed, and repeat count field updates to register duplicated
events).

The rules can start external procedures to run in resources managed by Tivoli
Framework. The TEC console can be configured to display events that are
logically grouped according to administration needs.

Netcool/OMNIbus
In Netcool/OMNIbus, alerts are collected from event sources in the infrastructure
environment, then processed and stored in a high-speed memory resident
database called ObjectServer.

Netcool/OMNIbus can receive events from a variety of sources using probes and
monitors. Events are sent from probes/monitors to the ObjectServer using a
database middleware layer, which runs over TCP/IP. Probes are passive
listeners that connect to an event source, detect and acquire event data, and
forward them to the ObjectServer as alerts. Probes use the logic specified in a
rules file to manipulate the event elements before converting them into fields of
an alert in the ObjectServer alerts.status table.

The difference in approach to event processing with TEC is that OMNIbus is
designed to automatically detect duplicate and correlated events and only update
those affected fields (such as time of delivery, duplicate count, event metrics).
These features are provided with an out-of-the-box OMNIbus installation, but can
be customized on demand.

1.4.2 Event sources

This section provides an overview of the event sources available for Tivoli
Enterprise Console, followed by a comparison with those available for
Netcool/OMNIbus.

Tivoli Enterprise Console
An adapter is a process that monitors resources so that they can be managed.
These monitored resources are called sources. A source is an application (for
example, a database) or system resource (for example, an NFS server). When
an adapter detects an event generated from a source (generally called a raw
event), it formats the event and sends it to the event server. The event server
then further processes the event.

 Chapter 1. Introduction 9

Adapters can monitor sources in the following ways:

� An adapter can receive events from any source that actively produces them.
For example, SNMP adapters can receive traps sent by the Simple Network
Management Protocol (SNMP).

� An adapter can check an ASCII log file for raw events at configured intervals if
the source updates a log file with messages.

Adapters can send events to the event server using a Tivoli interface or a
non-Tivoli interface. Both types of interfaces send events using an ordinary
TCP/IP channel. The difference between the two interfaces is the method used
to establish the connection.

Other event sources for TEC are IBM Tivoli Monitoring, Tivoli NetView, and
Tivoli Business Manager 3.1.

Netcool/OMNIbus
Netcool/OMNIbus can receive events from a variety of sources using probes and
monitors. Events are sent from probes/monitors to the ObjectServer using a
database middleware layer, which runs over TCP/IP.

Probes are passive listeners that connect to an event source, detect and acquire
event data, and forward them to the ObjectServer as alerts. Probes use the logic
specified in a rules file to manipulate the event elements before converting them
into fields of an alert in the ObjectServer alerts.status table.

Each probe is uniquely designed to acquire event data from a specific source.
Netcool/OMNIbus collects data from thousands of device types through a range
of generic data collectors (probes) including SOA, SNMP, log, and socket. The
wide coverage is augmented by over 200 vendor-specific probes. Probes can
acquire data from any stable data source, including devices, databases, and log
files.

Netcool/OMNIbus 7.2 probes can communicate with an ObjectServer via IPv6
transmission protocol.

Netcool/OMNIbus also integrates with the Tivoli Composite Application Manager
for Internet Service Monitoring product that provides monitors for testing the
availability and performance of Internet services (HTTP, HTTPS, DNS, POP,
SNMP, FTP, DHCP, IMAP, and so on).

Other event sources for Netcool/OMNIbus are other management applications of
the Netcool suite: Tivoli Business Service Manager 4.1 (formerly known as
Netcool/Realtime Active Dashboard) and Tivoli Network Manager IP Edition
(formerly known as Netcool/Precision for IP Networks).

10 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Other Netcool suite components exist to enrich events received from
Netcool/OMNIbus, such as Tivoli Network Manager IP Edition’s topology-based
Root Cause Analysis (RCA) engine and Netcool/Impact.

1.4.3 Event visualization

This section provides an overview of how events information can be viewed in
Tivoli Enterprise Console, followed by a comparison with the visualization
provided by Netcool/OMNIbus.

Tivoli Enterprise Console
Event consoles provide a GUI that allows the IT staff to view and respond to
dispatched events. A senior administrator configures multiple event consoles
based on the responsibilities of the IT staff. Users can have independent or
shared views of events.

IBM Tivoli Enterprise Console presents two versions of the event console:

� Java event console: The Java version of the event console can be installed
on a managed node, an endpoint, or a non-Tivoli host. The Java event
console provides a full set of features needed by Tivoli Administrators to
perform configuration tasks, start Tivoli NetView functions, run local
automated tasks, and manage events.

� Web event console: The Web version of the event console can be used only
to manage events from a Web browser. The Java console is still necessary to
perform any other tasks available from the event console (that is,
configuration tasks).

 Chapter 1. Introduction 11

Figure 1-2 and Figure 1-3 on page 13 show the Summary Chart View and the
Event Viewer.

Figure 1-2 Summary Chart View

12 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-3 Event Viewer

Netcool/OMNIbus
Like Tivoli Enterprise Console, Netcool/OMNIbus has a native and Web-based
Graphical User Interface (GUI).

 Chapter 1. Introduction 13

The native GUI consists in an integrated suite of graphical tools used to view and
manage alerts and to configure how alert information is presented. The focal
point for the visualization of events information is called event list.

Figure 1-4 The Netcool/OMNIbus event list

The event list can also be accessed from Netcool/Webtop. Webtop is the
Web-based Netcool/OMNIbus desktop. It supports the same tasks that can be
performed through the OMNIbus native GUI, offering an additional range of GUI
building blocks that operators can use to enrich the visualization, such as:

� Maps
� Charts
� Tabbed windows
� Customized pages

14 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-5 shows the event list visualization within Netcool/Webtop.

Figure 1-5 Event list in Netcool/Webtop

It is important to point out that the Netcool/OMNIbus GUI provides a much wider
range of visualization and event management features, compared to Tivoli
Enterprise Console. These are immediate advantages that Netcool/OMNIbus
customers can benefit from.

1.4.4 Product administration and configuration

This section provides an overview of how administration and configuration tasks
are performed in Tivoli Enterprise Console, followed by a comparison to the
corresponding way provided by Netcool/OMNIbus.

Tivoli Enterprise Console
TEC uses the Tivoli Framework to authenticate the user’s access. Each Tivoli
Enterprise Console can be configured to assign the groups and operators to
design the particular profile. The operator must be defined as a Tivoli

 Chapter 1. Introduction 15

administrator and have the appropriate Tivoli authorization roles to access TEC
resources.

Figure 1-6 and Figure 1-7 on page 17 show the Administration panel from the
Tivoli Framework Desktop interface and Tivoli Enterprise Console Administration
panel, where the association of Tivoli Framework Administration to TEC console
should be configured.

Figure 1-6 Administration in Tivoli Framework Desktop Interface

16 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-7 TEC Administration Configuration panel

 Chapter 1. Introduction 17

Netcool/OMNIbus
Administration and configuration of Netcool/OMNIbus ObjectServer involve the
following tasks:

� Defining and editing users, groups, roles, and restriction filters
� Editing the structure of the ObjectServer
� Defining and editing SQL procedures and database triggers

These tasks can be performed in the following ways:

� Using ObjectServer SQL interactive interface
� Through the Netcool/OMNIbus Administrator GUI

The ObjectServer SQL interactive interface is a command-line utility that permits
the execution of SQL queries against the ObjectServer. The user can log in to
the ObjectServer with the appropriate credentials and type the SQL queries to be
performed.

The administrator GUI provides the ability to accomplish the above tasks in an
easier way, simply by clicking the required menu in the Administrator window. In
addition, through administrator it is possible to manage multiple ObjectServers
and process control agents from a single console.

18 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-8 shows the Administrator window.

Figure 1-8 Example of Administration window

 Chapter 1. Introduction 19

It is interesting to notice that there is a GUI version of the SQL interactive
interface in the Administrator window (Figure 1-9).

Figure 1-9 SQL interactive interface in the Administrator window

Netcool/OMNIbus user management features are discussed in detail in 1.5.7,
“Security” on page 33.

1.4.5 Integration with other products

This section describes the typical products that are used with Tivoli Enterprise
Console and compares them with Netcool/OMNIbus.

Tivoli NetView
Tivoli NetView is a network management product that discovers TCP/IP
networks, displays network topologies, correlates and manages events and
SNMP traps, monitors network health, and gathers performance data.

20 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In the NetView configuration steps, customers can setup forwarding network
events to Tivoli Enterprise Console. NetView provides the necessary definition
(BAROC) file to be loaded into the TEC rulebase and a template of predefined
rules that correlate events from NetView.

IBM Tivoli Monitoring (ITM) V5.1.x
IBM Tivoli Monitoring allows you to monitor the availability and performance
status of resources on your systems to identify bottlenecks and potential
resource problems.

This product requires the Tivoli Framework infrastructure to be installed and
managed. It follows the Tivoli Framework object concepts: profile managers,
profile, subscribers, and endpoints.

ITM 5.1 has in the profile configuration a setup to send the generated events to
the event server. The product provides the necessary BAROC file to be loaded
into the TEC rulebase.

IBM Tivoli Monitoring (ITM) V6.1
IBM Tivoli Monitoring V6.1 has a different concept of monitoring servers when
compared to the previous version V5.1.

It presents different components: Tivoli Enterprise Management Server (TEMS),
Tivoli Enterprise Portal (TEP), and Tivoli Enterprise Monitoring Agents (TEMA).

The agent (TEMA) that runs on target machines is completely different from the
module that is distributed into the endpoint code.

The product provides the necessary BAROC file to be loaded into the TEC
rulebase.

IBM Tivoli Monitoring V6.2
IBM Tivoli Monitoring V6.2 is an upgrade for ITM 6.1.

The Tivoli Enterprise Portal (TEP) has some additional functions to customize
situations to send events to TEC, for example:

� Setting the severity
� Defining multiple EIF receivers to receive the ITM events
� Setting up each situation individually to send events to EIF receivers

 Chapter 1. Introduction 21

1.4.6 Netcool/OMNIbus

Netcool/OMNIbus gateways enable the integration between ObjectServers and
complementary third-party applications, such as databases and helpdesk or
Customer Relationship Management (CRM) systems.

Gateways are able to send alerts to a variety of targets:

� A database
� A helpdesk application
� Other applications or devices

Database gateways are used to store alerts from an ObjectServer. This is useful
to keep a historical record of the alerts forwarded to the ObjectServer.

Helpdesk gateways are used to integrate Netcool/OMNIbus with a range of
helpdesk systems. This is useful to correlate the trouble tickets raised by your
customers with the networks and systems that you are using to provide their
services.

Other gateways are specialized applications that forward ObjectServer alerts to
other applications or devices (for example, a flat file or socket).

Tivoli Network Manager IP Edition
Tivoli Network Manager IP Edition (formerly Netcool/Precision for IP Networks)
includes complete layer 2 and event management capabilities out of the box.
Like Tivoli NetView, you can customize the console interface to include
contextual launch points to third-party products such as element managers and
other diagnostic tools from event and topology views. You can also augment the
console with CGI-served portlet views by the Netcool GUI Foundation server or
from the Internet.

Tivoli Network Manager IP Edition includes a powerful perl API for access to all
the data in its the various components via Object Query Language (OQL)
commands. This is widely used as a scripting language for extending the
product, such as creating new discovery agents, custom reports, and so forth.
Agents and stitchers can be deployed to extend discovery for specialized
devices or purposes.

Netcool/Impact
Impact extends the functionality of the Netcool suite by allowing automation to
correlate, calculate, enrich, deliver, notify, escalate, visualize, and perform a
wide range of automated actions by accessing data from virtually any source.
The key advantage that Impact provides when performing these tasks is that it
accesses the data in real time.

22 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Tivoli Business Service Manager 4.1
Tivoli Business Service Manager 4.1 (formerly Netcool/Realtime Active
Dashboard) helps business and operations staff understand the complex
relationships between business services and supporting technology. It gives
organizations advances, and real-time visualization of services and processes in
a comprehensive service dependency model.

1.5 Benefits of upgrading to Netcool/OMNIbus

In this section we take a look at some of the extra features that upgrading to
Netcool/OMNIbus will bring to existing Tivoli Enterprise Console customers. This
is not designed to be an exhaustive list of the capabilities of Netcool/OMNIbus,
but instead to demonstrate the flexibility of Netcool/OMNIbus and the Netcool
suite. The following topics are included:

� Scalability and performance
� Consolidation
� Ease of use
� Reliability
� Enhanced event visualization and management
� Enhanced event enrichment
� Security
� IPv6 support
� IBM product strategy

1.5.1 Scalability and performance

Netcool/OMNIbus’ ultra-scalable event architecture enables growth over time
from the minimum configuration through its modular architecture, enabling
expansion without re-engineering of the core solution. This enables the
customers to optimize investment as service demand increases.

A Netcool/OMNIbus environment is scalable in a variety of ways to meet
increased need:

� Additional and new network equipment: As new network equipment is added
to the system, it may be monitored by existing or newly deployed probes.
New probes are added to the managed domain without any Netcool/OMNIbus
system downtime. The exclusive data paradigm means that if a probe has
access to an element, its events will be reported in the ObjectServer and
visible on the desktop regardless of whether the element appears within
models used by other parts of Netcool. Netcool/OMNIbus has no

 Chapter 1. Introduction 23

application-enforced limit to the number of elements that can be managed
because its functionality is not dependent on a finite model.

� Increased event load: The ObjectServer memory-resident database holds
only current events for those elements with active alarms. Historical data is
archived through an RDBMS gateway, ensuring that the memory
requirements are kept to a minimum. Only in the largest installations does it
become necessary to scale the Netcool/OMNIbus architecture across
additional tiers of ObjectServers. In a tiered architecture, data collection
ObjectServers are deployed, providing an intermediate data handling layer
below the aggregation capability.

� Large User Community: Netcool/OMNIbus can support the majority of
operational users within a simple deployment. As user numbers grow,
specialized Display ObjectServers may be deployed into a two-tier or
three-tier structure to remove the desktop load from the aggregation server.

Designed for ultimate scalability, the high-speed Netcool/OMNIbus ObjectServer
collects event information from across the infrastructure, deduplicating and
filtering the data so that it can be effectively managed. With event processing
support scalable up to the 10–100 million events per day range,
Netcool/OMNIbus can be deployed in a distributed, parallel, or hierarchical
fashion to support complex operations environments that span diverse
geographic boundaries.

The features of Netcool/OMNIbus that contribute to reduced application
workload are:

� Greater scalability through routing of events to multiple tables and
ObjectServers: This can be used to help reduce the load on the core of the
Netcool/OMNIbus system while ensuring that tables are not overpopulated
with inappropriate events.

� Dynamic configuration and administration: The ObjectServer can be
configured while running, reducing downtime.

� Advanced Profiling: Major improvements to profiling and reporting
mechanisms capture resource usage data for all connected clients and for
individual trigger processes within the automation system. This can be used
to automatically adjust the configuration of the system to ensure that it is
optimized.

� Load balancing: Connection-based load balancing is a part of the desktop
ObjectServer architecture. This enables the administrator to define a set of
display servers to which desktops can be connected.

Common Event Format and triggers provide a focused structure for consolidated
management of disparate entities. Other approaches process an order of

24 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

magnitude fewer events, necessitating trade-offs between breadth and speed,
which reduces accuracy and time to resolution.

You can use triggers to detect changes in the ObjectServer and execute
automated responses to these changes. This enables the ObjectServer to
process alerts without requiring an operator to take action.

Netcool/OMNIbus is shipped with a set of standard automations that includes
functions like:

� Backing up the ObjectServer

� Adding alerts to the ObjectServer

� Clearing the events on a time basis that can be specified by the operator

� Correlating the events following a problem/resolution criterion and
intercepting the attempt to insert duplicate rows in the database

� Deleting the clear events after a certain amount of time

� Inserting journal entries

� Removing redundant entries from various tables

� Correlating interconnected events (very useful for root cause analysis of
failures)

� Deleting the less important events, giving operators the opportunity to focus
on the critical ones

� Sending e-mails to operators in case of the occurrence of particular events

� Creating alerts in response to the occurrence of particular events

� Automatically acknowledge/deacknowledge events

� Automatically change the status or the criticality of events

These automations are completely customizable.

1.5.2 Consolidation

OMNIbus can receive events from a variety of sources using probes and
monitors. In addition. the typical components of the Tivoli Framework (Tivoli
Enterprise Console, IBM Tivoli Monitoring, Tivoli NetView) can also act as event
sources for OMNIbus. This feature is most useful when applied in complex
environments. In fact, OMNIbus can consolidate events from multiple TEC
servers, therefore making it easier to manage all the alerts coming from different
regions of the infrastructure.

 Chapter 1. Introduction 25

1.5.3 Ease of use

OMNIbus is delivered in the Netcool Installer that provides standardized
installation and software management methods across the Netcool suite. The
installer provides a default GUI mode and two command-line options to allow
deployment on servers with limited user display functions or making use of a
user prepared set of installation options to run without any user interaction.

A basic configuration can be installed and collecting alarms within a few hours. A
fully customized solution including integrations to third-party and other Netcool
applications would typically take a few weeks.

Low training costs and ease of use provides immediate return on investment.
Off-the-shelf Netcool probes and monitors can be installed quickly and will
immediately begin collecting alarms from a wide variety of data sources. With
quick installation and setup time, OMNIbus stores alarms, performs basic
correlation and deduplication, and then makes the event available to the other
components of the Netcool suite.

OMNIbus also has many dynamic features, improving productivity and meaning
less interruption to service when compared to TEC. For example, changes to
activate, deactivate, or debug automations can be performed with a single click
in OMNIbus compared to the process of editing rule files, compiling and loading
rulebases, and stopping and starting the event server that we have in TEC.

1.5.4 Reliability

The software-based failover architecture of the Netcool/OMNIbus solution
provides reliable 24x7 operational cover for many of the world's largest
operations centers. The majority of maintenance tasks can be executed in real
time without service interruption. Automated backup routines provide the means
of archiving the state of the current configuration.

Netcool/OMNIbus supports failover and failback tasks through the setup of a
failover configuration.

The failover configuration consists of installing two separate ObjectServers that,
respectively, act as primary and backup data repositories.

The data flow between the primary and the backup ObjectServer is handled by
an ObjectServer bidirectional gateway, which allows alerts to flow from a source
ObjectServer to a destination ObjectServer. Changes made to the contents of a
source ObjectServer are replicated in a destination ObjectServer, and the
destination ObjectServer replicates its alerts to the source ObjectServer.

26 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Failover occurs when the component loses its connection to the primary
ObjectServer. The component will then connect and forward events to the
backup ObjectServer. Failback functionality allows the component to reconnect
to the primary ObjectServer when it becomes active again.

In this way, it is possible to keep on working on the backup ObjectServer even if
the primary ObjectServer is not available, because all the changes are replicated
in it as soon as it is up and running again.

Additionally, Netcool/OMNIbus probes can continue to run if the target
ObjectServer is down. This prevents the loss of alerts coming from the monitored
infrastructure in case of an ObjectServer unavailability.

To accomplish this, when the probe detects that the ObjectServer is not present
(usually because it is unable to forward an alert to the ObjectServer), it switches
to store mode.

In this mode, the probe writes all of the messages it would normally send to the
ObjectServer to a file.

When the probe detects that the ObjectServer is back online, it switches to
forward mode and sends the alert information held in the file to the ObjectServer.
Once all of the alerts in the file have been forwarded, the probe returns to normal
operation.

Store and forward functionality is enabled by default, and is activated once a
connection to the ObjectServer has been established. If the ObjectServer is not
running when the probe starts for the first time, store and forward mode is not
triggered and the probe terminates.

In addition to this, two instances of a probe can run simultaneously in a
peer-to-peer failover relationship. One instance is designated as the master. The
other acts as a subordinate and is on hot standby. If the master instance fails, the
subordinate instance is activated. This is called peer-to-peer failover.

Note: The gateway is always connected to the backup ObjectServer. On
failure of the primary, the gateway loses its connection to the primary, but
remains connected to the backup.

Note: After installation, a probe needs to learn the ObjectServer schema. This
happens on the first connection of the probe to the ObjectServer. Therefore,
store and forward mode can be activated, in case of ObjectServer
unavailability, only if the probe has successfully connected to the
ObjectServer at least one time previously.

 Chapter 1. Introduction 27

1.5.5 Enhanced event visualization and management

The Netcool/OMNIbus GUI provides unique flexibility in the visualization and the
management of events.

The core component of the Netcool/OMNIbus GUI is the event list, which
enables the operator to view and manage alerts.

Information about alerts is displayed in the event list according to filters and
views. Filters enable the operator to display a subset of alerts based on specific
criteria. Views enable the operator to choose which alert fields to display.

To work on an alert, it has to be selected first. This can be achieved by clicking it.
The alert can then be:

� Acknowledged
� Deacknowledged
� Deleted
� Prioritized
� Owned
� Assigned to users
� Resolved

Note: Peer-to-peer failover is not supported for all probes.

28 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-10 shows how to execute tasks on selected alerts.

Figure 1-10 Available tasks for selected alert

The range of tasks that can be performed on a selected alert can be enriched
with additional tools that can be easily deployed through the administrator
console, shown in Figure 1-8 on page 19. In this way, operators can perform
some common management operations on the go, simply clicking the events that
they want to manage.

Due to the high number of events that OMNIbus can handle, it is useful to be
able to filter out the information of interest, and also select what aspects of an
alert we are interested in. This can be achieved through the filter builder and the
view builder.

The filter builder is a GUI tool used to define SQL queries against the
ObjectServer alerts database tables in order to display custom alert information
in monitor boxes and event lists.

 Chapter 1. Introduction 29

Figure 1-11 shows the filter builder tool in UNIX.

Figure 1-11 Filter builder tool in UNIX

The SQL query can be entered manually in the dedicated space or built through
the appropriate SQL building blocks provided within the interface.

View builder
Views define the type and formatting of information that appears in event lists.
For each view, you can specify:

� Attributes to include in the event list
� Field titles
� Field formatting
� How information is sorted
� Whether to restrict the number of rows displayed in the event list

30 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 1-12 View builder

 Chapter 1. Introduction 31

1.5.6 Enhanced event enrichment

Netcool/OMNIbus is not only a repository for collected events, but also the
central unit for event enrichment.

Additional information to be used to enrich events can be gathered both from
OMNIbus internal sources and other products of the Tivoli Netcool suite:

� Probes lookup tables
� Netcool/Impact
� Tivoli Business Service Manager 4.1
� Tivoli Network Manager IP Edition

Probes lookup tables
Lookup tables provide a way to add extra information in an event. A lookup table
consists of a list of keys and values. It is defined with the table function and
accessed using the lookup function.

The lookup function evaluates the expression in the keys of the named table and
returns the associated value. If the key is not found, an empty string or the
defined default value is returned.

Lookup tables are very useful because they provide a way to enrich the event
directly after the collection from the source, and therefore they have no impact on
the workload at the ObjectServer level.

Netcool/Impact
Netcool/Impact complements Netcool/OMNIbus by enriching events with
contextual data from almost any source and performing automated actions. Its
dynamic real-time data access capabilities deliver a unique and highly scalable
approach that facilitates rapid problem resolution.

Impact allows a business monitor perspective to be layered on a system monitor
perspective. Specifically, Impact allows you to implement policy, enrich events,
and create synthetic events. An example of a policy would be to check a
database of scheduled maintenance when a device reports an outage.

Tivoli Business Service Manager 4.1
The Tivoli Business Service Manager 4.1 (TBSM 4.1) product delivers the
technology for IT and business users to visualize and assure the health and
performance of critical business services.

The TBSM 4.1 tools enable you to build a service model that can be integrated
with OMNIbus object server alerts, or optionally with data from an SQL data
source. TBSM 4.1 processes the external data based on the service model data

32 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

that you create in the TBSM 4.1 database and returns a new or updated TBSM
4.1 service event to the OMNIbus object server.

The TBSM server analyzes ObjectServer events or SQL data from other data
sources, for matches against the incoming status rules configured for your
service models. If matching data changes the service status, the status of the
TBSM service model changes accordingly. When a services status changes,
TBSM sends corresponding events back to the ObjectServer.

Tivoli Network Manager IP Edition
The addition of Tivoli Network Manager IP Edition to an OMNIbus environment
extends the network management capabilities to include extensive automated
network discovery and best-of-breed topology-based root cause analysis,
providing customers with the best possible real-time understanding of their
network infrastructures and the fastest possible resolution of network problems.

Network information and relations between network devices discovered by TNM
Agents are collected and stored within the TNM database. A graphical network
topology (Topoviz) is built based on this information. The graphical network
topology together with real time events from network devices provides the
information for root cause analysis (RCA). RCA works with OMNIbus probe
events from network devices (SNMP and Syslog) together with probe events
from other sources. These tools can help reduce the time needed to restore
network operation and ensure that the network operations staff has meaningful
contextual information available.

Within TNM, the topology-based event correlation engine uses the model of the
discovered network to understand the relationships between network events
based upon the connectivity and containment (various groupings) of network
devices. This enables Tivoli Network Manager IP Edition to quickly and
accurately identify root cause events (to the node and port level) and their
associated symptoms, thereby reducing the time needed to restore the network
and ensuring that customer-facing network operations staff has meaningful
contextual information at their fingertips.

Integration with Netcool/OMNIbus allows the TNM topology-based event
correlation engine to process events obtained from both network devices and
other management systems using a broad range of available integrations.

1.5.7 Security

Client authorization is defined within the ObjectServer using the administrator
client or command-line utility. User authentication may be defined in the
ObjectServer where passwords are encrypted using DES encryption by

 Chapter 1. Introduction 33

concatenation of the password and salt data, or by reference to external
authentication systems via PAM integration on UNIX platforms. DES is the
default encryption method. Is it also possible to enable AES encryption.

Communication paths between the Netcool/OMNIbus components may
optionally be secured by Secure Sockets Layer (SSL) functionality included
within each component. SSL/TLS is used for server authentication, data
encryption, and data integrity.

Encryption is provided by FIPS 140-2 approved cryptographic providers;
IBMJCEFIPS (certificate 376) or IBMJSSEFIPS (certificate 409) and IBM Crypto
for C (ICC (certificate 384) for cryptography. The certificates are listed on the
NIST Web site at:

http://csrc.nist.gov/cryptval/140-1/1401val2004.htm

Netcool/Webtop also maintains a separate list of user definitions, but this
information can be automatically migrated from an OMNIbus ObjectServer.

Note: DES encryption is the default. AES can be enabled by running the
ObjectServer with the property PasswordEncryption set to “AES”.

34 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://csrc.nist.gov/cryptval/140-1/1401val2004.htm

Figure 1-13 shows a view of the default roles available through the administrator
console.

Figure 1-13 User roles management through the administrator console

Moreover, through the Netcool/Webtop console, operators can create
customized pages for a single user or groups of users, therefore making it
possible to hide or show information on demand, and to create effective
operational, executive, and business views.

OMNIbus can support a large number of concurrent users without impacting
service performance.

 Chapter 1. Introduction 35

1.5.8 IBM product strategy

The key point of IBM product strategy regarding Netcool/OMNIbus and Tivoli
Enterprise Console is that IBM supports customers over the coming years to
upgrade at an appropriate time.

The general guidelines for the product strategy are as follows:

� Tivoli Monitoring (TEMA/TEMS/TEPS) is the strategic monitoring platform for
Tivoli’s product portfolio.

� Tivoli Enterprise Portal (TEP) and its evolution (Tivoli Integrated Portal, TIP) is
the common and strategic console for operations and policy management for
Tivoli’s product portfolio. The active event list from Webtop will ultimately
replace the native desktops.

� OMNIbus is the base for the convergence of the event infrastructure for
Tivoli’s product portfolio.

The directions IBM takes into account for this event management unification are:

� Integrate the positive qualities of both systems into a configurable end-to-end
event management solution preserving customers investments in deployed
assets.

� Step-by-step rollout to both product sets that are converging capabilities on
normal release cycles to increase value to customers as we go.

� The expectation is that all customers will eventually upgrade to the unified
event management platform:

– Co-existence and interoperation between TEC and OMNIbus will be
provided while unification is delivered.

– Customers can upgrade on their time line.

– IBM expects the upgrades to occur over a number of years.

– Tivoli is putting in place mechanisms and capabilities to enable customers
to control this upgrade and execute in smooth, nondisruptive steps.

– No customer will be left behind.

36 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 2. Architecture

In this chapter we describe first Tivoli Enterprise Console and then
Netcool/OMNIbus architecture components and how they are distributed in a
typical architecture. As we go on with the description, the functionality of the
components is compared so that TEC and OMNIbus users can consider the
differences between them.

2

© Copyright IBM Corp. 2008. All rights reserved. 37

2.1 Tivoli Enterprise Console architecture

Tivoli Enterprise Console is flexible and scalable to suit different characteristics
of a customer’s environment. Some of the characteristics to consider are:

� How big is the environment to be managed, and how are the resources
geographically distributed?

� How many events will be generated and how often?

� What type of operating system or application will generate events?

� How many administrators and operators will handle the product?

2.1.1 Typical installation

The typical installation scenario is shown in Figure 2-1.

Figure 2-1 Typical Tivoli installation

38 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Components of the Tivoli Framework architecture
The components of the Tivoli Framework architecture are:

� TMR region

A Tivoli environment consists of one or more Tivoli regions. Each Tivoli region
consists of a TMR server, one or more managed nodes, and multiple
endpoints. The Tivoli regions can be interconnected. TMR stands for Tivoli
Management Region. A Tivoli region is an entity that contains the Tivoli
server and its clients. A Tivoli region contains three tiers of resources: the
Tivoli server, managed nodes and gateways, and endpoints.

� TMR server

This is the main server in one Tivoli region. It can delegate and distribute
tasks to managed nodes.

� Managed node

This is subordinate to a TMR server and receives the binaries to be able to
execute almost all of the commands by itself. The TMR server is also a
managed node.

� Gateway

Some managed nodes can be configured as a gateway. One gateway can
typically take care of hundreds of endpoints. It receives the binaries to be able
to download the code to endpoints. It is often used when customers have
distributed sites and one gateway can be placed in each site, for example.

� Endpoint

This is the agent code that runs at a target machine. Several different flavors
of operating system are supported. This agent code is the base for several
different Tivoli framework applications such as Enterprise Console adapters,
remote control, inventory, and software distribution.

� RIM host

One managed node in a region is configured to be an RIM host. The
RDBMS’s client code must be installed at this managed node. The function of
this component is be able to connect to a relational database.

� RDBMS server

Some Tivoli products utilize a database, for example, inventory, TEC, and
IBM Tivoli Configuration Manager (ITCM), so the customer has to provide a
RDBMS server to implement those products.

� Event server

This is the main component of the Tivoli Enterprise Console. It has to be
installed at a managed node.

 Chapter 2. Architecture 39

� TEC console

This is the component of the Tivoli Enterprise Console for the visualization of
events.

� TEC gateway

This is the Tivoli Enterprise Console component that provides the function of
a gateway between endpoints and the event server. Its code runs on a
managed node.

� TEC SCE gateway

The State Correlation Engine (SCE) is used to provide high-speed event
filtering and event collection. It is normally located at a TEC gateway, but can
be deployed on an endpoint.

� TEC ACF gateway

This is the Tivoli Enterprise Console component that has the binaries to
distribute Adapter Configuration Facility (ACF) profiles to endpoints.

� TEC adapter

This is the code that collects the source information such as messages from
logfiles (application and system) on targets. There are many available
adapters that Tivoli Enterprise Console offers.

� TEC adapter (non-TME)

It is an adapter that does not require the Tivoli Framework infrastructure to
send events. A TCP/IP socket connection will provide the connection from the
adapter direct to the TEC server.

� Tivoli desktop

This is the graphical interface from where Tivoli administrators can manage
the resources.

Optional source components
NetView Server is the product that manages network resources. It has its own
user and administration interface. It has a strong integration with Tivoli Enterprise
Console because, although network operations keep the NetView interface to
monitor and control the network events, TEC is the centralized view where
events detected by NetView can be correlated with other service events.

IBM Tivoli Monitoring is the product that monitors at a fine level of detail the
health of operating systems, databases, and applications. It presents the
information in a Web portal interface, called the Tivoli Enterprise Portal (TEP).
Again, as operations need a centralized interface to manage events coming from
operational systems and applications, the TEC console is typically the central

40 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

view to manage these vents. Optionally, the TEC console can be integrated into
the ITM TEP view.

2.1.2 Describing TEC components

In this section we describe some of the TEC components that have equivalent
functions on Netcool/OMNIbus.

Framework authentication
All Tivoli users have an administrator object associated to them. Each Tivoli
administrator is associated to a login and group of the operating system of a
managed node. When users accesses the Tivoli desktop, authentication of the
user is required. The operating system controls the password changes.

So, for a TEC operator configuration, an association with a Tivoli administrator is
required. Then, to access the TEC console, the user has to authenticate with the
same login used to access the Tivoli desktop.

Framework authorization
In a Tivoli environment, to complete an administrator configuration:

1. Define the name of the administrator.

2. Define the login name and group name with which this administrator will be
authenticated into the operational system.

3. Define the TMR roles. These are the global TMR roles that the administrator
will have in the environment. It will allow him to execute actions in the desktop
interface or by command lines.

4. Define the TMR resource roles. These roles are defined if the administrator
has to have special roles over specific Tivoli resources (for example, one
policy region where a senior authority is required).

5. Define the notice groups. The administrator could have access to one or more
groups of notices. Each notices group receives messages about
administration actions that have been taken to this group.

On the TEC configuration, some steps should be executed to have the TEC
operators configured:

1. TEC operators have to be associated with only one Tivoli administrator.

2. One TEC operator can be associated with just one TEC console.

3. One TEC console can manage one or more TEC groups. For each TEC
group, the TEC administrator has to define which roles the TEC operators will

 Chapter 2. Architecture 41

have in the visualization of that event group. The roles are super, senior,
admin, and user.

Framework (RIM Object)
The event server stores the events in a relational database. The product
interacts with the database server using an internal ODBC connection. This
internal ODBC connection receives a special name in the Tivoli environment:
RIM object.

The RIM object is configured on one managed node that has the database client
or server code.

The main parameters to configure a RIM object are:

� Database server host name
� Relational database vendor
� Database client or server installation path
� Instance name
� User and password to access the database

Framework (TEC gateways)
Managed nodes and gateways were created to provide scalability in the Tivoli
environment.

The Tivoli architecture is a three-tier hierarchy. The TMR server is on the top
level. Managed nodes (with the gateway function) are on the second tier
controlled by the TMR server. Endpoints, on the third level, are controlled by the
gateways.

Gateways can control hundreds of endpoints. The recommended limitation is
1,500–2,000. If a gateway is unavailable, the other gateway can manage the
endpoints that were under control of the unavailable gateway.

The TMR server is the main controller, and policies can guarantee the
assignment of endpoints between the gateways.

There are two reasons for configuring the TEC gateway:

� Creating a gateway receiver component to receive events from non-TME
adapters.

� Adjusting the interval the gateway sends events to the TEC. This time interval
can be made dependent on a time interval or on the event cache size.

42 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

TEC event server
The TEC event server is the core component of the TEC environment. The event
server architecture consists of the following five processes. The process names
are in parentheses.

� Master process (tec_server)
� Reception engine process (tec_reception)
� Rule engine process (tec_rule)
� Dispatch engine process (tec_dispatch)
� Task engine process (tec_task)

In addition, there is the tec_ui_server process, which is discussed later in detail.

Figure 2-2 shows the event flow in TEC.

Figure 2-2 TEC event flow

 Chapter 2. Architecture 43

The five processes are:

� Master process

The master process coordinates all of the other event server processes. The
master process also initially receives incoming events sent from Tivoli
communication and forwards the events to the reception engine.

� Reception engine process

The reception engine process receives incoming events and logs them to the
reception log. The reception engine pulls the events from the reception buffer
to the rule engine for processing.

� Rule engine process

The rule engine is a rule-based event processor. The event is evaluated
against the rules. After rule processing, the event is placed into the event
cache of the rule engine. The event in the rule engine currently being
evaluated is referred to as the event under analysis. An event that satisfies
the specification criteria of a rule causes the rule to run, which means that the
actions defined by the rule are performed. This is the first input stream into
the rule engine.

� Dispatch engine process

The dispatch engine communicates with the rule engine and the task engine
to know when to update event information. If tasks or programs need to be
run for an event, the dispatch engine contacts the task engine for running
them. The dispatch engine also manages requests for event changes coming
from an event console (through the UI server) and sends them to the rule
engine. When the event server is started, the dispatch engine retrieves
events from the event database to reload the event cache for the rule engine.

� Task engine process

The task engine runs programs, tasks, scripts, and commands initiated by
rules. The task engine process monitors these running items and can return
their exit status to the dispatch engine, which writes the status to the event
database. The task engine runs these items as it receives requests to do so.
It does not wait for a running item to complete before starting another one.

User interface server and WebSphere Console Server
In this section we discuss the user interface server and the WebSphere®
Console Server.

User interface server
The user interface (UI) server provides communication services between the
event consoles and the event server. The UI server communicates with the
dispatch engine when it needs to contact the event server. The UI server

44 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

provides transaction locking for event console status updates and prevents
multiple event consoles from responding to the same event. The UI server also
automatically updates the status of events on all event consoles by forwarding
the event changes from the event consoles to the dispatch engine, which sends
the changes to the event database. For example, when an operator
acknowledges an event, the UI server automatically updates the status of the
event on each event console that contains the event.

The information about event changes is pulled from the TEC console through its
JRIM interface.

Web-based event console
You can use the Web-based event console to manage events from your Web
browser. The Web-based event console includes the following features:

� Tivoli secure logon for added security.

� Event console definitions, event group definitions, and preferences that an
administrator defines using the Java version of the event console take effect
for the Web version, so that both the Web version and the Java version of the
event console can be administered from a single place.

� Ability to view additional information about an event in a Web page, which
helps an operator determine the actions to perform and whom to contact.

� Multiple event details with additional contextual information, viewed in a
single Web page, improving operator understanding.

� Multiple operators can be assigned to a single event console definition.

� Changes to event console definitions are automatically reflected in the event
console in the next logon session.

� The event console refresh rate can be changed to update events at an
interval that meets your needs.

� Event viewer data, event summary data, and task information are cached,
reducing the load on the event server database and the Tivoli Management
Framework. You can configure the timeout intervals for these caches, which
helps you to balance your needs for performance and current information.

� A single installation of the Web version of the event console can be
configured to support the installation of the Tivoli Enterprise Console product
in multiple Tivoli regions.

� Ability to run predefined tasks.

� When there are conflicts between event consoles, such as two operators
simultaneously attempting to change the status of an event, they are resolved
automatically and operators are notified.

 Chapter 2. Architecture 45

The Web version of the event console organizes the tasks that you can perform
in a portfolio, which is titled my work. The portfolio contains the following tasks:

� Select an Event Group: lists the event groups that have been assigned to the
event console. To manage the events in an event group, select the
appropriate event group from the list. An event viewer is displayed, which
contains the events in the selected event group.

� View Summary of Events: shows a high-level overview of the health of
resources represented by an event group, indicating the number of events for
each event severity in each event group and the total number of events for
each event severity. You can also display the percentage of events for each
event severity. To manage the events in an event group, select the name of
the event group.

� An event viewer is displayed, which contains the events in the selected event
group.

� Run Tasks: runs predefined tasks from task libraries.

� Change User Preferences: Controls the display of events in the event viewer.
For example, you can change the automatic refresh rate and the maximum
number of events to display in the event viewer.

Java event console
The Java version of the event console can be installed on a managed node,
endpoint, or host in a non-Tivoli environment. The Java version of the event
console includes the following features:

� Tivoli secure logon for added security.

� Each event console retrieves event information directly from the database for
high performance and scalability.

� The event console refresh rate is configured to allow different event consoles
to be given different priorities for event updates.

� The ability to run local actions and commands enables third-party or custom
scripts and applications to be run easily from the event console.

� The ability to run predefined tasks. For more information about running tasks
from a task library, see the online help for running tasks in the event console.

� Automated tasks can be configured in advance and run when a particular
event is received by the event console.

� The ability to view more information about an event in a Web page, which
helps an operator to determine the actions to perform and whom to contact.
When the sample event information is installed, samples and hooks are
provided to help you enable this feature. Customers must provide the
additional information to customize their environment.

46 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� Multiple event details, viewed in a single window with additional contextual
information, improving operator understanding.

� All attributes, including custom attributes, can be displayed and filtered for
event groups with SQL operators. For more information about attributes, see
the event group entries provided in the online help for the event console.

� Multiple operators can be assigned to a single event console definition. For
more information about defining event consoles and operators, see the online
help for the event console.

� When editing event console definitions, all operators assigned to that event
console automatically pick up the changes, thus eliminating the need for
scripts to be used to update or create event consoles.

� When there are conflicts between event consoles, such as two operators
simultaneously attempting to change the status of an event, they are resolved
automatically and operators are notified.

� Import and export functions enable the event console and event group
definitions to be exported to a file for archiving or for easily migrating from the
development environment into production.

The Java version of the event console provides the following views:

� Configuration view: The Configuration view is used to configure both the Java
version and the Web version of the event console. Only administrators have
access to this view.

� Summary Chart view: The Summary Chart view is used to show a high-level
overview of the health of resources represented by an event group. Each
event group is represented by a single bar, similar to a bar graph, on an
operator’s event console. To open an event group, click the bar representing
that group.

� Priority view: In the Priority view, event groups are represented by buttons.
The buttons representing each event group display the event group name,
and the color of the button representing each event group corresponds to the
color defined for the highest severity event contained in that group. To open
an event group, click the button representing that group.

External event database
The Tivoli Enterprise Console product uses an external relational database
management system (RDBMS) to store the large amount of event data that is
received. The RDBMS Interface Module (RIM) component of the Tivoli
Management Framework is used to access the event database.

The supported database servers are DB2®, Oracle®, Informix®, MS SQL, and
Sybase.

 Chapter 2. Architecture 47

Command-line framework commands and tasks
Behind all configuration that Tivoli administrators execute by graphical interface,
there is at least one command line being executed. So, for automation tasks,
command lines used in scripts are very useful and optimize the time for
maintenance of Tivoli resources.

It is often convenient or more appropriate to invoke a Tivoli management
application operation from the command line than from the graphical user
interface for remote access, multiple operations, and scripts. Each command line
has one or more authorization roles.

Framework and TEC tasks
Recognizing the need to put these commands and scripts behind an icon, for
operations purposes, there are also several task libraries that have been
developed, including several specifically created for TEC operations. Tasks can
also be fired by TEC rules.

TEC command-line utilities
Some useful utilities are also provided to help administer a TEC environment, to
test communications, or to embed in monitoring scripts, for example:

� wtdumprl to dump out the contents of the reception log

� wtdumper to dump out the contents of the rule cache

� wtdbclear to delete all or a subset of events from the database

� wpostemsg or wpostzmsg to send an event to the event server via the Tivoli
framework

� postemsg or postzmsg to send an event without using the Tivoli framework

Event sources
The sources that are deployed by Tivoli Enterprise Console out of box are:

� AS/400® alert/message adapter: forwards events from an AS/400 system to
the event server.

� NetWare adapter: forwards events from a NetWare server.

� OpenView adapter: forwards events from Hewlett-Packard OpenView to the
event server.

� OS/2®: forwards events from an OS/2 system to the event server.

� SNMP: The Simple Network Management Protocol forwards events from
SNMP traps to the event server. The SNMP adapter serves the function of
collecting SNMP trap messages directly from the SNMP trap socket of a host
and translating SNMP traps into appropriate TEC class instances.

48 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� UNIX logfile: The TME® UNIX logfile adapter receives raw log file information
from the UNIX syslogd daemon, formats it, and sends it to the TEC gateway.
The TEC gateway then sends the information to the event server. The
non-TME UNIX logfile adapter sends information directly to the event server.

� Windows®: The adapter for the Microsoft® Windows event log forwards
events from a Windows system to the event server. It is registered with the
startup configuration of a Windows system so that the adapter is started with
all the other applications that are automatically started when the Windows
system is started.

Framework policy-based distribution and subscription
One of the key features of the Tivoli framework is the policy-based architecture,
which allows the definition of profile managers, profiles, and subscribers to those
profiles. In this way TEC adapter profiles are defined for different event sources
and can be distributed in a single step to multiple subscribers or targets in groups
of geographical location or department, for example. This distribution, which
might be a new adapter, a configuration change, or a new code version, can then
take place over the Tivoli framework to hundreds of target endpoints
simultaneously.

Rulesets
TEC provides a default rulebase with a number of rulesets in it. Not all rulesets
are initially active, but users can enable them anytime. Usually, an administrator
customizes his own rulesets.

Table 2-1 shows a list of the rulesets that are included in the default rulebase.

Table 2-1 Rule sets included in the default rulebase

Rule set Description Activated Configuration
required

cleanup.rls Closes old open events Yes No

correlation.rls Event correlation No Yes

db_cleanup.rls Deletes old closed events No No

dependency.rls Defines dependency relationships for
e-business rules

Yes No

ebusiness.rls Causal analysis of events from
e-business applications

Yes Yes

escalate.rls Automatic severity escalation No No

event_activity.rls Generation of event activity reports No No

 Chapter 2. Architecture 49

2.1.3 Complex scenarios

Tivoli Framework can be implemented in a large-scale environment. If the
management environment is becoming complex, there are some different
architectures that can be chosen to fit the customer needs.

Connecting multiple Tivoli regions
To meet the needs and demands of managing thousands of resources that are
geographically dispersed across networks, Tivoli Management Framework
enables you to logically partition your managed resources into a series of
connected Tivoli regions. Each region has its own server for managing local
clients and a set of distributed replicated services for performing management
operations. Regions can be connected to coordinate activities across the
network, enabling large-scale Systems Management and offering the ability for
remote site management.

event_filtering.rls Filtering of unwanted events No Yes

event_thresholds.rls Severity escalation based on repeated
events

No Yes

forwarding.rls Event forwarding No Yes

heartbeat.rls Heartbeat monitoring Yes No

maintenance_mode.rls Maintenance mode support Yes No

netview.rls Clearing and synchronizing of network
events

Yes No

notify.rls E-mail or pager notification No Yes

ov_default.rls Processing of HP OpenView events No No

tecad_nv390fwd.rls Forwarding of NetView for z/OS®
events

No Yes

tecad_nv390msg.rls Processing of NetView for OS/390®
Message Adapter events

No No

tecad_snaevent.rls Processing of SNA alert events No No

troubleticket.rls Integration with trouble ticket systems No Yes

Rule set Description Activated Configuration
required

50 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Types of region connections
With the ability to selectively connect regions, Tivoli administrators can control
the scope and effect of local configuration changes. At the same time, Tivoli
administrators can enable centralized management and propagation of new
policy rules, configuration changes, and operations to all connected regions.
Region connections are directed, meaning that they are not necessarily
symmetric with respect to the two regions involved. Connections can be either
one-way or two-way.

� One-way region connections

In a one-way connection, only one region has knowledge of the other, so
information is passed from the managing system only. One-way connections
are useful where a central site is responsible for administering several remote
sites, but none of the remote sites need to manage resources at the central
site or at other remote sites. Each remote site could also have its own local
operator who might be responsible for managing day-to-day operations on
local resources, while the connection from the central site is used for more
global updates across the company, such as a new version of an application.
Although one-way connections are feasible, we recommend two-way
connections.

� Two-way region connections

Each Tivoli region involved in a two-way connection is aware of the existence
of the other. Information exchanges about system resources occur in both
directions. Two-way connections are useful in a variety of situations, such as
a very large local area network that is logically partitioned. By using two-way
connections, the management load is spread across multiple Tivoli servers. In
addition, two-way connections are needed to access and manage resources
in other regions.

Multiple region architectures
When connecting multiple Tivoli regions, consider the following architectures:

� Hub and spoke
� Master-remote
� Fully interconnected

Hub and spoke connections
The hub and spoke architecture improves performance by distributing server
load. In this architecture, the Tivoli environment is segmented into several
regions, each responsible for directly managing a different physical segment of
the enterprise. This architecture supports a centralized management paradigm
by having all management operations performed through the hub region. Remote
(or spoke) regions are placed and configured to optimize network utilization and
system performance and to distribute Tivoli server loads.

 Chapter 2. Architecture 51

The hub region provides a centralized Tivoli server in its own dedicated region.
The hub server directly manages a limited number of resources so that it can be
dedicated primarily to the maintenance and administration of the Tivoli object
database and Tivoli environment. It is also the focal point for hub-wide activities
as required. For example, the hub Tivoli server is responsible for configuring and
distributing monitoring profiles to any servers in the environment. The hub server
is not responsible for directly managing resources. The spoke regions directly
control the endpoints in the Tivoli environment. Spoke regions are used to group
managed nodes by physical location in the network and to localize Tivoli
functions to that physical location, improving network and system performance.
Generally, spoke regions are not used as entry points for administrators. With a
properly implemented logical design, virtually all Tivoli operations can be
performed from the hub region without concern for where the object being
manipulated exists in the spoke environment.

Master-remote connections
The master-remote architecture supports a distributed management structure by
having the managed function operations being performed by administrators from
their own regions. The different regions are connected to each other through a
two-way connection, allowing the resources to be managed by any administrator
in the managed environment.

Fully interconnected connections
The fully interconnected architecture has regions that are created for use within
business units or for some subgroup within the enterprise. The regions are
connected on an as-needed basis, which often leads to fully interconnected
regions.

52 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In Figure 2-3 you can see an example of a large-scale environment with
hub-spoke architecture.

Figure 2-3 Hub-spoke architecture

TEC servers in a multi-region environment
As noted earlier, there is only one TEC server per TMR region. However, with
any of the multi-region configurations above, it is possible for a single TEC server
to scale to support multiple TMR environments and, hence, many thousands of
event sources.

It is equally possible for each TMR to have its own TEC server, and to have
endpoints or gateways sending events to a local TEC server as a primary and a
second as a failover. The most usual failover configuration is to use the TEC
gateway in this role, but either is possible. If this failover is done, the first
communication method is normally the framework and the second is direct
socket connection to the remote TEC.

TEC servers can also be configured in a multi-tier architecture of two or even
three tiers to suit geographical, operational, or business constraints. Typically,
this is configured if a service provider or part of the organization is concentrating
events from several customers or other parts of the organization into a central
place. This is commonly referred to as a manager of managers role. A multi-tier

 Chapter 2. Architecture 53

configuration can also be implemented for scalability if the forwarding of events
from one layer to the next is selective.

2.1.4 TEC integration

In this section we describe some integration scenarios between TEC and IBM
Tivoli Monitoring.

IBM Tivoli Monitoring
A simple ITM scenario is shown in Figure 2-4 on page 55, with:

� TEMS hub: the ITM component responsible for connecting to the agents and
integrating with TEPS to publish the collected monitoring data and user
access authentication.

� TEPS: the ITM component responsible for saving configuration information
and publishing the monitoring data through the desktop or Web browser
interface.

� TEP client: the ITM user interface, which could be deployed as a desktop
console or in Web console mode.

� ITM agents: represents the targets machines that receive the monitoring
agent code and run the code. It connects to the TEMS hub.

54 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-4 ITM basic architecture

Benefits of integration
Providing the integration, some benefits for the management environment are
achieved:

� TEC is a focal point for enterprise-wide events including ITM.
� Event correlation capabilities in TEC are not replaced by ITM.
� Integration facilities are available with ITM code.
� TEP allows integration with the TEC console.

 Chapter 2. Architecture 55

TEC - ITM integration architecture
Figure 2-5 shows the TEC-ITM integration architecture. To provide the
integration, some components must be known:

� Event Forwarder: This is installed on the TEMS as the default by the base
ITM product installer.

� TEC event synchronization: This is installed separately, either by UI or
silently. It provides processes, scripts, files, and rules to be installed on the
same box of an existing TEC server.

� TEC Event Viewer: This is a feature installed as an option by the base ITM
product installer. It is also know as TEC GUI Integration.

Figure 2-5 TEC-ITM integration components

56 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

TEC-ITM integration event flow
Figure 2-6 shows the sequence of information flow:

1. Agents trigger situation. TEMA code that runs on the target machine is
constantly being checked to fire alerts to TEMS.

2. TEMS generates events. The Event Integration Facility function is customized
to generate the events following the situations that were configured.

3. Events are received and processed by TEC. The events are processed by
rulesets that correlate with other events coming from other sources if
required.

4. Status of events sent back by SUF. Situation Update Forwarder is the Java
code that is responsible to return information to TEMS.

Figure 2-6 TEC-ITM event flow

 Chapter 2. Architecture 57

Deploying scenarios
There are different scenarios that the TEC-ITM integration can fit. Depending on
your management scenario, one of the following configurations could be chosen:

� Multiple HUB TEMS to HUB/Spoke TEC

If your management environment exists on a HUB TEMS and some remote
TEMSs, the HUB TEMS can be configured to integrate to a Tivoli architecture
of HUB and spoke TEC. Figure 2-7 shows this scenario.

Figure 2-7 Multiples HUB TEMS integration to HUB-Spoke TEC

Here, the customer has the TEMS HUB infrastructure (ITM Hub1, ITM Hub2,
ITM Hub3), so these ITM Hubs can integrate into a TEC Spoke.

This TMR Region is structured as HUB/Spoke—one TEC Hub receiving
events from other two TEC Spokes (TEC Spoke A and TEC Spoke B).

As ITM events go to TEC Spoke A, the forwarding rules make the TEC Hub
receive the events, too. So, the bi-directional function should be deployed at
the TEC Hub, so the updates made from TEC Hub operators can be
replicated to the TEMS Hub.

58 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Other TEC sources continue to integrate to the TEC Spoke with no
interference.

� Multiple HUB TEMS to a single TEC

If your management environment exists on a HUB TEMS and some Remote
TEMSs, the HUB TEMS can be configured to integrate to a Tivoli architecture
of a single TEC. Figure 2-8 shows this scenario.

Figure 2-8 Multiple HUB TEMS integrating to TEC

Here, the customer has the TEMS HUB infrastructure (TEMS Hub1 and
TEMS Hub2), so these TEMS Hubs can integrate to a TEC server.

As ITM events goes to the TEC server, the bi-directional function should be
deployed at the TEC server, and then the updates made from TEC server
operators can be replicated to the TEMS Hub.

Other TEC sources continue to integrate to the TEC server with no
interference.

 Chapter 2. Architecture 59

� Single HUB TEMS to multiple TEC servers (from ITM 6.2)

If your management environment consists of a single HUB TEMS, this can be
configured to integrate to a Tivoli architecture of multiple TEC servers.
Figure 2-9 shows this scenario.

Figure 2-9 HUB TEMS integrating to more than one TEC server

Here, the customer has one TEMS HUB.

From ITM 6.2, a TEMS HUB can be configured to send to more then one EIF
receiver, so ITM events can be sent to more than one TEC server.

The bi-directional function should be deployed at all TEC servers. Then the
updates made from TEC server’s operators can be replicated to TEMS Hub.

2.2 IBM Tivoli Netcool/OMNIbus architecture

This section gives a detailed overview of IBM Tivoli Netcool/OMNIbus
architecture and components.

2.2.1 Architecture introduction

IBM Tivoli Netcool architecture is based on a layered structure of components,
functions, and integrations.

60 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Collection layer
The collection layer with the function of Netcool probes and monitors provides:

� Lightweight, extensible event and data capture
� Dynamic real-time data access

Consolidate layer
The consolidate layer with the core components and functionality of Netcool
ObjectServer, gateways, and integration of third-party solutions provides:

� Ultra-scalable event architecture
� Integrates into performance management

Analyze and automate layer
These ObjectServer functions may involve operator interaction at the native
desktop or the active event list (AEL). The analyze and automate layer within the
Netcool ObjectServer native desktop provides:

� Netcool distributed correlation
� Real-time business metric reporting
� Netcool/OMNIbus automations
� Integration to Netcool comprehensive discovery components

Inform layer
The inform layer with the Netcool components of the Netcool ObjectServer native
active event list and Netcool/Webtop Web-GUI provides:

� Real-time service dependency visibility
� Dynamic network views

 Chapter 2. Architecture 61

2.2.2 Architecture overview

Figure 2-10 provides an overview of the Netcool/OMNIbus 7.2 architecture.

Figure 2-10 Netcool/OMNIbus core architecture

2.2.3 Component description

In this section we provide component descriptions.

ObjectServer

The Netcool/OMNIbus ObjectServer is a Structured Query Language (SQL)
database residing completely in memory. It receives events from a variety of
monitoring sources or external programs such as probes, monitors, and

62 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

gateways. For notifying clients of changes to data within the ObjectServer, insert,
delete, update and command (IDUC) protocol is used. Event information is
stored and managed in database tables, and displayed in the event list.

Users, groups, and roles are defined within the ObjectSever database.
Authentication and access are maintained and controlled within the ObjectServer
database. Netcool/OMNIbus V7.2 has enhanced the existing core functions with:

� Accelerated event notification

� ObjectServer health and performance agent

� Out of the box failover configuration for automations

� Operating in a pure IPv6 or dual-stack environment

� Class hierarchy and extended attribute support for Tivoli Event Console
transition

� Globalization to support language packs

� Infrastructure enhancements

� Enhanced upgrades for earlier OMNIbus versions

� Enhanced integrations (for example, extended attributes and ObjectServer
fields for TEC integration)

Netcool/OMNIbus is multi-threaded and manages threads within the application.
Netcool/OMNIbus Version 7 introduced native multi-threading, which provides
reduced database lock times. This functionality supports read concurrency within
a multi-processor system. This is enabled when the read load within a cycle
exceeds the capacity of a single processor. Either a single write operation or
multiple read operations can be processed. Read/write concurrency is not
possible.

The ObjectServer performs the equivalent functions provided by the TEC server,
TEC Relational Database Management System Interface Module (RIM) objects,
framework authentication and authorization, event server database, and some
basic TEC rule functionality. TEC connects to an independent and external
database as an external component, compared to the ObjectServer in-memory
database, which provides much higher performance and availability of event
storage.

The event list for the visualization of events is part of the dedicated native
desktop console. It consists of an integrated suite of graphical tools used to view
and manage events, and to configure how event information is presented. The
desktop console, together with the included SQL interactive command-line
interface, provides administrative access to the ObjectServer.

 Chapter 2. Architecture 63

Tables
The ObjectServer database contains the following tables: alerts tables, service
tables, system catalog tables, statistics tables, client tool support tables, desktop
tools tables, desktop ObjectServer tables, and security tables.

alerts.status
The alerts.status table contains the event information. Each event has 56
standard attributes (the columns) by default in the alerts.status table.
Administrators can add additional fields up to a total of 512. Important fields are:

� Identifier: primary key for the alerts.status database (controls duplication of
events).

� Node: name or IP address of the event originating device.

� Summary: description of the problem in human-readable form.

� Severity: specifies event priority level (0–5) and determines background color
in the GUI visualization.

� Acknowledged: indicates whether the alert has been acknowledged.

� OwnerUID and OwnerGID: restricts the permissions of who can modify an
event. These fields are used primarily for auditing purposes. Modification
restrictions are a configurable option.

� FirstOccurrence: date and time during which the event first occurred on the
managed device.

� LastOccurrence: date and time of the last occurrence of the event.

� AlertKey: the descriptive key that indicates the managed object instance
referenced by the alert.

� AlertGroup: the descriptive name of the type of failure indicated by the alert.

� Tally: automatically maintained count of the number of inserts and updates of
the alert from any source. This count is affected by deduplication, which is
discussed later in this book.

Note: Netcool/OMNIbus is based on Sybase Open Server technology.
Netcool/OMNIbus V7.1 uses Sybase OpenServer Version 12.5.1 and
Netcool/OMNIbus V7.2 uses Sybase OpenServer Version 15.

Note: Netcool/OMNIbus versions prior to V7.2 also included Flex License
Server, which was related to Netcool license management of all components.
In all versions covered in this book, the Flex License Server is no longer
needed and is therefore not considered.

64 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

alerts.details
In certain circumstances, operators may be interested in the raw (that is, before
any advanced management) data coming from a probe. When details tracking is
enabled, data is stored in the alerts.details table as token value pairs. Details
may be viewed from the Details tab located on the Information window, accessed
using the alerts menu for selected events. Details are linked to their respective
events using the identifier field. Details could also be stored in the ExtendedAttr
field of the event. See “Second solution: extended attributes” on page 213 for a
description of this field and the supporting rules file and ObjectServer functions.

alerts.journal
When working with events, users may want to track the history of them. For
example:

� Who has owned it?
� What severity levels has it passed through?
� What automations have run on it?

Journals provide this functionality. The journal information is held in the
alerts.journal table. Journals are linked to their respective events using the Serial
field, which is a primary key in both alerts.status and alerts.journal.

Communication
The main communication mechanism is based on Tabular Data Stream (TDS).
TDS is licensed from Sybase.

Data flow between ObjectServer and the native eventlists and gateways is
managed by a second communications link known as Insert Delete Update
Control (IDUC). The IDUC channel is used by the ObjectServer to periodically
notify the clients of the events that have changed since the last notification. On
receipt of the IDUC notification the client requests the full data for the updated
events via the normal TDS channel. This technique is used to balance the client
load over a period of time known as the granularity period, which by default is 60
seconds. Each IDUC client is notified on a round-robin basis once in each
granularity cycle.

This information is stored in the interfaces file omni.dat in the $NCHOME/etc
directory on UNIX and %NCHOME%\ini\sql.ini. on Windows. The format of the
interfaces file is platform-specific. That is, an interfaces file written on one
architecture (for example, Solaris™) cannot be used on another (for example,
Linux).

Server components need to access this interfaces file to know how to start up.
Client components (desktops and probes) need to access the interfaces file to
know where to connect to their named server.

 Chapter 2. Architecture 65

The interfaces file, while text-only, should not be edited directly. Instead, there
are both GUI (nco_xigen) and non-GUI (nco_igen) utilities that ensure correct
formatting of the interfaces file.

Figure 2-11 shows the ObjectServer communication process regarding the
interfaces file.

Figure 2-11 ObjectServer communication

Administration tools
The Netcool administrator configuration application is a stand-alone Java
application for configuring one or more ObjectServers.

Within the administrator configuration you can configure a number of settings of
Netcool/OMNIbus., which are described in detail on the following pages.

Automations
Tivoli Netcool/OMNIbus automations provide automatic management of events
in the ObjectServer. The automation will detect predefined changes in the
ObjectServer and execute automated responses to these changes. This enables

66 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

the ObjectServer to process many alerts without requiring an operator to take
action. Automations can consist of triggers, procedures, and user-defined
signals. Automations can:

� Perform external commands automatically on the receipt of certain events.

� Incorporate escalation procedures.

� Allow correlation of events and automatically manage events.

� Execute an external command. This gives the ability to launch other
applications or run scripts.

� Execute SQL statements internally on the events stored in the ObjectServer.

� Use field values from an event.

� Use variables from the OS environment or those stored in the ObjectServer.

� Add a journal entry to track changes.

Triggers
Triggers form the basis of the ObjectServer automation subsystem. Triggers
automatically fire (execute a trigger action) when the ObjectServer detects an
incident associated with a trigger. In a trigger, you can execute SQL commands
and call procedures in response to the change.

Triggers are used to automatically manage events and perform escalation,
correlation, and external commands. Trigger groups allow you to manage
multiple triggers. Each trigger must belong to only one trigger group, but can be
moved between groups. A trigger group can be deleted only if empty.

Triggers can be deployed with the aid of the administrator GUI as well as from a
command line using SQL instructions.

There are three types of triggers, as discussed below.

 Chapter 2. Architecture 67

Temporal trigger
Temporal triggers execute on a time interval. Figure 2-12 shows the configuration
window of an temporal trigger.

Figure 2-12 Temporal trigger

Define Period

Evaluate Tab

68 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Database trigger
Database triggers execute on database conditions. Figure 2-13 shows the
configuration window of an database trigger.

Figure 2-13 Database trigger

Table
Name

Database
Operation

Applies to Row/Statement Pre/Post Database Operation

 Chapter 2. Architecture 69

Signal trigger
Signal triggers execute on a system-defined or user-defined signal. Figure 2-14
shows the configuration window of a signal trigger.

Figure 2-14 Signal trigger

Define Signal

Evaluate Tab

70 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-15 shows the configuration window of a user-defined signal.

Figure 2-15 User-defined signals

All triggers have a Settings tab to set the conditions under which the trigger
executes (time interval, database action, receipt of signal). A When tab allows
the operators to test for a particular condition before the action is performed. If
the condition is not met, the action is not performed. An Evaluate tab is used to
build a read-only temporary table (signal and temporal triggers only). An Action
tab determines what tasks have to be performed. A Comment tab is for
documentation.

The Action tab can consist of a sequence of SQL instructions as well as a call to
a procedure that can be defined in the appropriate panels of the administrator
GUI.

OMNIbus is shipped with a set of default automations that help the execution of
daily housekeeping activities.

Note: Shipped automations can be amended, but changes may affect the
running of the ObjectServer.

Unique Name

Signal Description

Define Parameters

Define Data Type

 Chapter 2. Architecture 71

Process control
The process control system performs two primary tasks:

� It runs external procedures that are specified in automations. Automations
detect changes in the ObjectServer and run automated responses to those
changes.

� It manages local and remote processes.

On UNIX systems, you can use process control to configure remote processes to
simplify the management of Netcool/OMNIbus components such as
ObjectServers, probes, and gateways. The process control system consists of:

� Process control agents, which are programs installed on each host for
managing processes

� A set of command-line utilities that provide an interface to process
management

Process control can be configured and managed through the administrator
console.

See Figure 5-5 on page 174 for an example of the administrator console
nco_xigen from the lab environment.

Users, roles, and groups
User roles are permission sets that allow access to ObjectServer data.
Predefined roles correspond to:

� Normal users
� Administrators
� Super users

User-settable parameters include:

� User ID and full name
� Group membership
� Restriction filters
� Password and enable state

Note: On Windows systems, process control only runs external procedures
that are specified in automations. You cannot use process control to manage
OMNIbus processes on Windows. A new version of process control for
Windows is planned to provide this functionality.

72 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Groups have users as members, manage users efficiently, and can have
associated roles and restriction filters. There are predefined Netcool/OMNIbus
groups.

Restriction filters
Restriction filters create an SQL filter that can be applied to groups and users.
They can filter on any database or database table, restricting the ability to view
certain columns of data, for example. Filters are inherited by users in a group.

Conversions
Conversions substitute integers for character strings. Integers are efficient in the
ObjectServer, but character strings are meaningful to humans. These are used
for display in the event list and filter builder. Figure 2-16 shows the ObjectServer
conversion panel.

Figure 2-16 Conversion

Tools
Tools allow the control of alert management functions within Tivoli
Netcool/OMNIbus from the event list. Each tool has an associated SQL
statement (called an internal effect), an executable (called an external effect), or
both. Tools can be grouped in tools menus, which can then be associated with
classes of alert. Tools are created independently from menus, so a global set of

 Chapter 2. Architecture 73

tools can be used on different menus. They can be restricted by both class and
group. This allows the tools to be event sensitive and user based. Tools can:

� Execute an external command on UNIX or Windows platforms. This gives the
ability to launch other applications or run UNIX commands.

� Execute SQL statements internally on the events stored in the ObjectServer.

� Run an executable.

� Gather more information from the user through the use of prompts.

� Use field values from an event.

� Use variables from the OS environment or those stored in the ObjectServer.

� Add a journal entry to track changes. These can be optional or forced.

Access to tools can be restricted by class and group. A global set of tools may be
re-used on different menus. Most standard tools run from the Alerts® menu.
Tools can also be anchored to other menus in the GUI.

Sometimes it is necessary to prompt the user for information needed to run the
tool. Netcool/OMNIbus provides prompts. Prompts are independent of tools.
Define a global set of prompts that can be accessed by any tool. Prompts are
integrated into the command syntax of the tool. The location of the prompt within
the command is important. It is replaced by user input. There are:

� Interacting-with-user prompts
� Fixed-choice prompts
� Lookup prompts

Administration interface
IBM Tivoli Netcool administrator configuration application nco_config is a
stand-alone Java application for configuring one or more ObjectServers.

The dedicated native desktop console is an integrated suite of graphical tools
used to view and manage events, and to configure how event information is
presented. Together with an included Structured Query Language (SQL), the
interactive command-line interface provides administrative access to the
ObjectServer.

Additionally, a complete command-line version of the capabilities provided with
the Web console is provided using a Web Administration Application
Programming Interface (WAAPI).

Note: Standard tools are available when Netcool/OMNIbus is installed.

Note: nco_sql is the SQL interface on UNIX and isql on Windows.

74 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The dedicated native desktop console’s functionality is equivalent to the Java
TEC console. The WAAPI functions are equivalent to Tivoli Framework
w-commands, except that WAAPI commands are written and processed in XML
formatted files.

ObjectServer severity colors can be edited and added for viewing on Windows
desktop and Netcool/Webtop only. Column visuals define default settings for
Event List column displays. Most settings can be overridden in the view builder.

Severities
There are six default levels for each event, as shown in Figure 2-17.

Figure 2-17 Objectserver severities

Proxy server
The ObjectServer receives alert information from probes. In a standard
configuration, alerts are forwarded directly to the ObjectServer. You can
configure a proxy server to reduce the number of probe connections to an
ObjectServer. Where a large number of probes are forwarding alert information
directly to the ObjectServer and a large number of desktop connections are also
made to the same ObjectServer, there can be a negative impact on performance.

 Chapter 2. Architecture 75

A proxy server provides a buffer to reduce the number of direct connections to
the primary ObjectServer. Multiple probe connections made to the proxy server
are multiplexed and forwarded through a single connection to the ObjectServer.
Figure 2-18 shows how probes communicate with the proxy server.

Figure 2-18 Example proxy configuration

Virtual ObjectServer configuration
A resilient pair configuration consists of two ObjectServers (presumably
geographically separated) with a bi-directional gateway serving to keep both in

Note: Putting a proxy server in place would not reduce the number of events
being forwarded. Its purpose is to reduce the number of connections.

Note: The proxy or probe consolidation server was originally introduced to
deal with low limits on file handles that restricted connections. The proxy is
now used more for easier firewall management. Placing a proxy in the domain
where the probes are located requires only one firewall change up to the
ObjectServer. Probes can then be added or redeployed without firewall
change.

76 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

synchronization. That way, regardless of which ObjectServer receives the event,
a desktop connected to either ObjectServer would see the same events.

In the interfaces file, both ObjectServers are configured. Additionally, a third
entry is required—a virtual entry with the host names and port numbers of both
members of the pair.

Clients (desktops and probes) can still connect to the either ObjectServer
directly. If, however, they connect to the virtual name, the underlying protocol
takes care of forwarding traffic to the first entry of the pair.

Figure 2-19 shows the overview of the virtual ObjectServer concept.

Figure 2-19 Virtual ObjectServer

Should a failure occur, the failover process automatically reroutes traffic to the
second entry. From the view of probes, this process is completely transparent.
With desktops, a dialog box appears notifying the user that a failure has
occurred.

When the first member of a pair recovers, the client will be redirected back to the
first interfaces file entry of the virtual server definition through a process known
as failback.

 Chapter 2. Architecture 77

Figure 2-20 shows the overview of the virtual ObjectServer concept in failover,
failback mode.

Figure 2-20 Failover and failback

There is no equivalent function in TEC compared to the Netcool/OMNIbus virtual
ObjectServer functionality. This is one of the benefits for Netcool/OMNIbus.

2.2.4 Probes

Probes are passive and lightweight software components that connect and listen
to an event or data source, looking for defined events. Events are formatted and
sent to the ObjectServer.

Probes use the logic specified in a rule file to manipulate the elements of an
event stream (tokens) before converting them into fields of an event in the
ObjectServer alerts.status table.

The probes provide similar functionality to that of the TEC adapters, such as
pattern matching, assigning variables, and discarding.

78 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-21 shows the Netcool/OMNIbus ObjectServer Probe architecture in
general.

Figure 2-21 Probe architecture

Probes can also be configured to modify and enrich event information via lookup
files and rules file includes. Refer to “Lookup tables” on page 87 and 6.5.3,
“Netcool Knowledge Library” on page 274 for more information about this topic.

Probes are resilient with a store and forward functionality, automatic fail-over to
alternate ObjectServer, and can send to more than one ObjectServer and table.

Each probe is uniquely designed to acquire event data from a specific source.
However, probes can be categorized based on how they acquire events. For
example, the probe for Oracle obtains event data from a database table, and is
therefore classed as a database probe. The types of probes are:

� Device
� Log file
� Database
� API
� Miscellaneous

Note: The estimated size of an Netcool/OMNIbus event stored in the
ObjectServer database is about 10 Kbytes per event, considering a full row
and the status, journal, and detail tables. It also includes one update and one
delete (for example, 10,000 rows need 100 Mb).

 Chapter 2. Architecture 79

� CORBA
� EIF Probe

Device probes
A device probe acquires events by connecting to a remote device, such as an
ATM switch. Device probes often run on a separate machine from the one they
are probing and connect to the target machine through a network link, modem, or
physical cable. Some device probes can use more than one method to connect
to the target machine. Once connected to the target machine, the probe detects
events and forwards them to the ObjectServer. Some device probes are passive,
waiting to detect an event before forwarding it to the ObjectServer (for example,
the probe for Marconi ServiceOn EMOS). Other device probes are more active,
issuing commands to the target device in order to acquire events (for example,
the TSM for Ericsson AXE10).

Log file probes
A log file probe acquires events by reading a log file created by the target
system. For example, the probe for Heroix RoboMon Element Manager reads
the Heroix RoboMon Element Manager event file. Most log file probes run on the
machine where the log file resides. This is not necessarily the same machine as
the target system. The target system appends events to the log file. Periodically,
the probe opens the log file, acquires and processes the events stored in it, and
forwards the relevant events to the ObjectServer as alerts. You can configure
how often the probe checks the log file for new events and how events are
processed.

Database probes
A database probe acquires events from a single database table, the source
table. Depending on the configuration, any change (insert, update, or delete) to a
row of the source table can produce an event. For example, the probe for Oracle
acquires data from transactions logged in an Oracle database table. When a
database probe is started, it creates a temporary logging table and adds a trigger
to the source table. When a change is made to the source table, the trigger
forwards the event to the logging table. Periodically, the events stored in the
logging table are forwarded to the ObjectServer as alerts and the contents of the
logging table are discarded. You can configure how often the probe checks the
logging table for new events.

Note: The probe type is determined by the method in which the probe detects
events. For example, the probe for Agile ATM Switch Management detects
events produced by a device (an ATM switch), but it acquires events from a
log file, not directly from the switch. Therefore, this probe is classed as a log
file probe and not a device probe.

80 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Database probes treat each row of the source table as a single entity. Even if
only one field of a row in the source table changes, all of the fields of that row are
forwarded to the logging table and from there to the ObjectServer. If a row in the
source table is deleted, the probe forwards the contents of the row before it was
deleted. If a row in the source table is inserted or updated, the probe forwards
the contents of the row after the insert or update.

API probes
An API probe acquires events through the API of another application. For
example, the probe for Sun™ Management Center uses the Sun Management
Center Java API to connect remotely to the Sun Management Center. API
probes use specially designed libraries to acquire events from another
application or management system. These libraries contain functions that
connect to the target system and manage the retrieval of events. The API probes
call these functions that connect to the target system and return any events to
the probe. The probe processes these events and forwards them to the
ObjectServer as alerts.

Miscellaneous probes
All of the miscellaneous probes have characteristics that differentiate them from
the other types of probes and from each other. Each of them carries out a
specialized task that requires them to work in a unique way. For example, the
e-mail probe connects to the mail server, retrieves e-mails, processes them,
deletes them, and then disconnects. This is useful on a workstation that does not
have sufficient resources to permit an SMTP server and associated local mail
delivery system to be kept resident and continuously running. Another example
of a probe in the miscellaneous category is the ping probe. It is used for
general-purpose applications on UNIX platforms and does not require any
special hardware. You can use the ping probe to monitor any device that
supports the ICMP protocol, such as switches, routers, PCs, and UNIX hosts.

CORBA probes
Common Object Request Broker Architecture (CORBA) allows distributed
systems to be defined independent of a specific programming language. CORBA
probes use CORBA interfaces to connect to the data source, usually an Element
Management System (EMS). Equipment vendors publish the details of their
specific CORBA interface as Interface Definition Language (IDL) files. These IDL
files are used to create the CORBA client and server applications. A specific
probe is required for each specific CORBA interface.CORBA probes use the

Note: Existing triggers on the source table may be overwritten when the probe
is installed.

 Chapter 2. Architecture 81

Borland VisiBroker Object Request Broker (ORB) to communicate with other
vendor's ORBs. You must obtain this ORB from technical support. Most CORBA
probes are written using Java, and require specific Java components to be
installed to run the probe, as described in the individual guides for these probes.
Probes written in Java use the following additional processes:

� The probe-nco-p-nonnative probe, which enables probes written in Java to
communicate with the standard probe C library (libOpl)

� Java runtime libraries

EIF probe
A range of Tivoli products, and all of the Tivoli Enterprise Console adapters,
generates events using the Event Integration Facility (EIF). The
Netcool/OMNIbus probe for Tivoli EIF can receive EIF events sent from any of
these Tivoli applications and forward them to the ObjectServer.

The EIF probe is a key part of the architecture for integration between TEC and
OMNIbus. It features in our best practice recommendations using
event-forwarding rules for sending events from the TEC server via the EIF probe
to the ObjectServer, and also from TEC adapters via the EIF probe to the
ObjectServer.

The probe for Tivoli EIF supports failover configurations where two probes run
simultaneously. One probe acts as the master probe, sending events to the
ObjectServer, while the other acts as the subordinate probe on standby. If the
master probe fails, the subordinate probe activates. Start two instances of the
probe, one as master and one as subordinate. While the subordinate probe
receives heartbeats from the master probe, it will not forward events to the
ObjectServer. If the master shuts down, the subordinate probe will stop receiving
heartbeats from the master and any events it receives thereafter will be
forwarded to the ObjectServer on behalf of the master probe. When the master is
running again, the subordinate will continue to receive events, but will no longer
send them to the ObjectServer.

Note: We recommend installing the EIF probe at the event source server. One
advantage of this is the probes’ capability to provide a secure socket layer
(SSL) connection between itself and the ObjectServer.

The probe for Tivoli EIF can connect to a remote device. The remote device is
specified using the PortNumber property in the properties file.

82 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

When the probe for Tivoli EIF starts, it monitors the port specified in the
properties file, and uses the EIF Java API to receive and parse the events. After
this process, the probe generates alerts and sends them to the ObjectServer.
The probe comprises two types of threads:

� One set of threads (the thread pool) to process events read from a client
� One thread to send the structured events to the ObjectServer

The probe for Tivoli EIF has a timeout facility that allows it to disconnect from the
client if it fails to receive the next alarm data within a predefined amount of time.
You can specify how long the probe waits before disconnecting using the
inactivity property. After this length of time, the probe disconnects from the
device and sends a ProbeWatch message to the ObjectServer. We recommend
that you set this property to 0, so that the connection never drops.

The probe for Tivoli EIF can capture the data stream sent to it from a TEC
adapter or an IBM Tivoli Monitoring (ITM) server. This data is stored in a log file
and can be used for debugging purposes, to develop new features for the probe,
or to pass to other management systems that require the same data.

All probes support multi-byte character sets. To view the character sets correctly,
you must configure the locale settings on the host machine correctly. Each
multi-byte character set is configured slightly differently on each platform. The
following two sections describe example locale configurations on a UNIX
platform and on Windows, respectively. Other character sets on other platforms
will be configured in a similar way.

Performance considerations
The performance can be limited by this mechanism, and customers should be
aware of throughput that can be achieved when this integration is enabled.
During performance tests, the throughput achieved using this mechanism and
the default configuration shipped is approximately 40–50 events per second
using the hardware and OS configurations described in the Tivoli & Netcool
Event Flow Integration white paper.

Probe components
A probe has following primary components:

� An executable file
� One properties file
� One rules file (or more if include statements are counted)

Executable file
The executable file is the core of a probe. It connects to the event source,
acquires and processes events, and forwards the events to the ObjectServer as

 Chapter 2. Architecture 83

alerts. Probe executable files are stored in the directory
“$OMNIHOME/probes/arch”, where arch is the platform name of the architecture.
For example, the executable file for the EIF Probe that runs on AIX is
“$OMNIHOME/probes/aix5/tivoli_eif.props”.

Properties file
Probe properties define the environment in which the probe runs. For example,
the server property specifies the ObjectServer to which the probe forwards
alerts. Probe properties are stored in a properties file in the directory
“$OMNIHOME/probes/arch”. Properties files are identified by the .props file
extension. For example, the properties file for the EIF probe that runs on AIX is
“$OMNIHOME/probes/aix5/tivoli_eif.props.

Probe operation
When initializing a probe, it reads its properties file that comes with each probe
installation and connects to the ObjectServer. The probe binary retrieves the
event stream from its source (for example, an element manager, SNMP traps,
log files, APIs, sockets).

Figure 2-22 shows the Netcool/OMNIbus ObjectServer Probe operation in the
flow.

Figure 2-22 shows the ObjectServer probe operation

START PROBE

READ .props, .rules, etc.

VALIDATE

READ EVENT FROM SOURCE

TOKENIZE

PROCESS VIA .rules

BUILD INSERT COMMAND

SEND TO OBJECT SERVER

$OMNIHOME/probes/nco_p_<probename> -server SERVERNAME

Binary starts with <probename>.props properties; reads in
<probename>.rules, additional files into memory

Verify sanity of rules file and Object Server fields

Connect to source (API, logfile, etc) and read an event …

… @fields are collected into an SQL Insert command…

… which is forwarded to the Object Server.
Buffers are flushed in anticipation of the next event.

SOURCE

START PROBE

READ .props, .rules, etc.

VALIDATE

READ EVENT FROM SOURCE

TOKENIZE

PROCESS VIA .rules

BUILD INSERT COMMAND

SEND TO OBJECT SERVER

$OMNIHOME/probes/nco_p_<probename> -server SERVERNAME

Binary starts with <probename>.props properties; reads in
<probename>.rules, additional files into memory

Verify sanity of rules file and Object Server fields

Connect to source (API, logfile, etc) and read an event …

… @fields are collected into an SQL Insert command…

… which is forwarded to the Object Server.
Buffers are flushed in anticipation of the next event.

SOURCE

84 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The probe binary tokenizes the event stream. The interpreted rules assign token
elements to ObjectServer fields and add extra information. The event is sent to
the ObjectServer and the probe then gets the next event.

Probe properties define a probe environment and behavior. There are two types
of probe properties:

� Generic - All probes have these properties.
� Probe-specific - additional properties, different for each probe.

Probe rules file
The rules file defines how the probe should process event data it receives in
order to create a meaningful Tivoli Netcool/OMNIbus alert.

The goals and objectives of the rules file development are listed below:

� The rules files created should be of production quality and provide
out-of-the-box value.

� The rules files should not require any modifications to the ObjectServer (that
is, no additional event fields other than the default fields provided in Tivoli
Netcool/OMNIbus).

� The basic structure of the files should be easy to maintain and easily
extendible, enabling the quick addition of event handling for new devices
without affecting existing rules.

� Basic textual-conventions for the rules files should be determined and
followed to ensure that rules files created by different persons share a
common format.

� The rules files should be sufficiently documented to allow each event to be
understood without additional documentation.

� The structure of the rules file should be as efficient as possible to maximize
throughput of events.

� The events formatted by the rules files should be deduplicated properly by the
Tivoli Netcool/OMNIbus ObjectServer.

� The events formatted by the rules files should be compatible with the
"GenericClear” automation whenever possible.

At a minimum, the completed rules files should provide the following basic
functionality:

� Automated deduplication of events and alarms in the Tivoli Netcool/OMNIbus
ObjectServer.

� Automated Generic Clear correlation of problem/resolution events.

 Chapter 2. Architecture 85

� Informative and descriptive event presentation in Tivoli Netcool/OMNIbus
ObjectServer.

� Development of a standalone rules files, which will be the only rules files read
by the probe at start time.

� Development of include rules files that will be added to an already existing
library of rules files called the Netcool Knowledge Library (NCKL). At start
time, the probe will read the core NCKL rules files, which will call (that is,
include) the device-specific or application-specific rules files written to
process the information received from the products to be integrated.

All probes split the event stream into tokens. Each tokens is a string containing
raw information about the alert. Tokens are identified within the rules file using
“$” (for example, $node is a token holding the node name). The rules file
determines how each token is mapped to the corresponding field, for example,
@field in the alerts.status table of the ObjectServer to create a Netcool/OMNIbus
event. Some or all of the tokens can be used to set the field values of
alerts.status.

Example 2-1 shows an example of splitting an event stream into tokens.

Example 2-1 Event stream into tokens example

$from = extract($Details, "FTP LOGIN FROM ([^]+) .*")
@AlertKey = $from
@AlertGroup = "security"
#$as = extract($Details, ".*, ([a-zA-Z0-9]+)")
$as = extract($Details, ".* ([a-z]+)")
@Summary = "ftp: login from " + $from + ", as " + $as
@Severity = 2

Example 2-2 shows an example of mapping between event stream tokens and
ObjectServer fields in the tivoli_eif.rules file.

Example 2-2 Token and fields

@TECSummary = $msg
@TECHostname = $hostname
@TECFQHostname = $fqhostname
@TECDate = $date
@TECRepeatCount = $repeat_count
@LastOccurrence = getdate
@FirstOccurrence = getdate
@TECStatus = $status

86 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Nearly all field values of alerts.status may be set through the rules file. Fields that
cannot be configured though alerts.status include Serial, ServerSerial, and Tally.
A probe can use multiple rules files.

Lookup tables
Lookup tables are an easy way of adding external information to an event. There
are two ways to define a lookup table:

� Rules table - The table is defined directly in the rules file.
� File table - The information is stored in a separate file.

The lookup tables provide similar functionality to that of the TEC fact files. The
lookup tables may be imbedded in the rules file, but are usually created in a
separate file for ease of maintenance. A lookup hash table must contain a set of
key and value entries.

Example 2-3 shows a sample of a list of International Mobile Subscriber Identity
(IMSI) values mapped to respective customers in a lookup file.

Example 2-3 Lookup entry example

key <tab separator> value
234011234567890 Corp-2
235150123456789 Netcool

2.2.5 Monitors

Monitors can be compared to the functionality of IBM Tivoli Monitoring. Their
function will be integrated into IBM Tivoli Monitoring. Netcool/Internet Service
Monitor (Netcool/ISM) is now called IBM Tivoli Composite Application Manager
for ISM.

2.2.6 Gateways

Netcool Gateways are software applications designed to provide unidirectional or
bidirectional communications between a Netcool/OMNIbus ObjectServer and

 Chapter 2. Architecture 87

external programs, complementary third-party applications such as databases,
help desk, or Customer Relationship Management (CRM) systems.

Gateways are used to replicate events or to maintain a backup ObjectServer.
Application gateways enable the integration of different business functions. The
transfer of events is transparent to operators.

Gateways are crucial for the deployment of the Netcool/OMNIbus Virtual
ObjectServer configuration for failover and failback.

Figure 2-23 shows the Netcool/OMNIbus gateway architecture.

Figure 2-23 Netcool/OMNIbus gatway architecture

The two types of gateways are the unidirectional and bidirectional types.

Unidirectional gateways allow alerts to flow in only one direction. Changes made
in the source ObjectServer are replicated in the destination ObjectServer or
application, but changes made in the destination ObjectServer or application are
not replicated in the source ObjectServer. Unidirectional gateways can be
considered as archiving tools.

88 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-24 shows a unidirectional ObjectServer gateway.

Figure 2-24 Unidirectional gateway

Bidirectional gateways allow alerts to flow from the source ObjectServer to the
target ObjectServer or application, and also allow feedback to the source
ObjectServer. In a bidirectional gateway configuration, changes made to the
contents of a source ObjectServer are replicated in a destination ObjectServer or
application, and the destination ObjectServer or application replicates its alerts in
the source ObjectServer. Bidirectional gateways can be considered as
synchronization tools.

Figure 2-25 shows an example of an bidirectional gateway.

Figure 2-25 Bidirectional gateway

Gateways have reader and writer components. Readers extract alerts from the
ObjectServer. There is only one type of reader, the ObjectServer reader.

Writers forward alerts to another ObjectServer or to other gateway-connected
applications. Writer modules manage communications between gateways and
third-party applications, and format the alert correctly for entry into the
application.

Gateways can be configured to operate in secure mode. If the ObjectServer is
not running in secure mode, probe, gateway, and proxy server connection
requests are not authenticated.

 Chapter 2. Architecture 89

Gateways also operate in store-and-forward mode. If there is a problem with the
gateway target, the ObjectServer and database writers can continue to run using
store-and-forward mode after switching into store mode. The gateway switches
back when it detects the destination server back online again.

Both the unidirectional and bidirectional gateways use the following set of
configuration files:

� Properties file: Define the gateway’s operational environment, such as
connection details and the location of the other configuration files.

� Map definition file: The gateway can replicate specific system tables and any
user table in the ObjectServer. To do this, the gateway maps data to the
appropriate fields in the ObjectServer using a map definition file. This
contains mappings that define how the gateways map this data.

� Startup command file: The startup command file contains a set of commands
that the gateway executes each time it starts. These commands allow the
gateway to transfer any subsidiary table data to a set of target tables.

� Table replication file: The gateway can replicate the data in specific system
tables and any user table between ObjectServers in a backup pair. Details of
the tables to be replicated are stored in the table replication definition file.

Example 2-4 shows syntax examples within the table replication definition file.

Example 2-4 Example syntax of the table replication file

FILTER WITH 'Severity=4 and Severity=5'
FILTER WITH 'Severity=4 and Type=1'
FILTER WITH 'TECGWCtrl=1 and Severity>4'
FILTER WITH 'Summary nmatch "Link Down*" or Summary regmatch "Link
Up*"'
FILTER WITH 'Summary like "Link Down on port"'
FILTER WITH '(Severity = 3 and Node = test) or (Severity = 5)'
FILTER WITH 'Severity = 3 and Node = \'test\' or Class = 11010';

The parenthesis around “Severity = 5” in Example 2-4 are not strictly necessary.
They are added here for readability when showing a complex filter. There is an
example of inclusion of single quotation marks in the ObjectServer gateway
guide (note that all quotation marks in this example are single ‘) VIA FILTER
'Name != \'nobody\'' .

90 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

2.2.7 Netcool/Webtop

Netcool/Webtop is a Web-based application that processes network events from
one or more ObjectServers and presents the event data to users in various
graphical formats. Webtop architecture uses the Apache Tomcat Web server to
provide OMNIbus Web console communications with an ObjectServer. User
access and role authorization is controlled through the Webtop server, with
account and password information either maintained on the connected
ObjectServer, locally on the Webtop server, or a combination of the two.

Figure 2-26 shows the architecture of the Netcool/Webtop Apache Tomcat Web
server.

Figure 2-26 Apache Tomcat Web server architecture

Netcool/Webtop displays multiple ObjectServers’ information on one Web page.

Apache Tomcat 5.5.4.0

ASA Database

Desktop
Webapp
/desktop

Apache
Slide

WebDAV
/webdav

Capture
Deployment

Servlet
/cri

Axis Web
Interface
/services

Capture
Playback&
Generation

/core

Mach Desktop

Apache Jetspeed 1.4

Apache Velocity
1.3

Apache Torque-
3.0Apache Turbine

Macant XML

 iA
nyw

here
 JD

BC-O
DBC Driv

er

Mach Desktop Components

Jetspeed Components

 Chapter 2. Architecture 91

The main event display components are:

� The Java-based active event list (AEL) allows clients to run sophisticated
native desktop actions such as acknowledging alerts, viewing alert journals,
taking ownership of alerts, running tools, and so forth.

� The dynamic HTML Lightweight Event List (LEL) provides clients with the
data filtering, data sorting, and information drill-down capabilities of the AEL.

� The HTML tableview component provides clients with a static event list in the
form of a table showing a defined set of alerts. The non-interactive tableview
provides an immediate snapshot of alert status within a monitored system.

The Netcool/Webtop application is equivalent to the TEC UI server and the TEC
WebSphere-based GUI console. The Netcool environment can also be
configured to be more scalable with a deployment of more than one display
ObjectServer and Netcool/Webtop servers.

2.2.8 Netcool GUI Foundation

The Netcool GUI Foundation (NGF) is a server application that delivers
Web-based IBM Tivoli Netcool products within a single, unified framework. The
NGF provides single sign-on, consolidated user management, and a single point
of access for integrated Netcool products. It allows you to customize the
presentation of content for integrated Netcool products, and control access to
content across products. The NGF is not available separately. It is installed
automatically with the first Netcool GUI Foundation-integrated product that is
installed. Subsequent products may install updated versions of the NGF. The
NGF uses Netcool Security Manager for authentication and authorization.

The Netcool GUI Foundation Version 1.1 supports:

� All external authentication sources supported by IBM Tivoli Netcool Security
Manager, and IBM Tivoli Netcool Security Manager failover.

� Two or more instances of the Netcool GUI Foundation connecting to a single
IBM Tivoli Netcool Security Manager server.

� IBM Tivoli Netcool products including:

– IBM Tivoli Netcool/Webtop 2.1
– IBM Tivoli Network Manager IP Edition (Advanced) 3.7
– IBM Tivoli Network Manager Transmission Edition 5.6
– IBM Tivoli Business Systems Manager 4.1

The Netcool GUI Foundation supports installation on IPv4 and dual stack
IPv4/IPv6 devices.

92 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-27 shows an example deployment where three IBM Tivoli Netcool
products are installed within the Netcool GUI Foundation.

Figure 2-27 Netcool GUI Foundation in the IBM Tivoli Netcool Suite

Figure 2-27 shows that the different components interact in the following ways:

� The Netcool GUI Foundation uses Netcool Security Manager for user
authentication and authorization.

� Different clients connect to the Netcool GUI Foundation. With the correct
product roles, any of these users can access functionality from product 1,
product 2, and product 3. In addition, any user with the correct administrative
roles can access the administration functions in the NGF.

The Netcool GUI Foundation can be displayed in the following languages:

� Japanese (JP)
� Korean (KR)
� Simplified Chinese (zh-TW)
� Traditional Chinese (zh-CN, excluding GB 03018)

 Chapter 2. Architecture 93

� French (FR)
� Spanish (SP)
� German (DE)
� Italian (IT)
� Portuguese Brazil (pt-BR)

Accessibility features of the Netcool GUI Foundation are:

� Keyboard shortcuts
� The Go button
� Other accessibility features, alternative text

2.2.9 Typical Netcool/OMNIbus deployment

Single-tiered systems are the most basic Netcool/OMNIbus deployment. In
single-tiered systems, all Netcool/OMNIbus clients connect to a virtual
ObjectServer comprising a failover pair of physical ObjectServers providing
collection, aggregation, and display functionality in a single tier. A bidirectional
gateway is deployed for synchronization.

Process control agents may be deployed to manage the core processes,
ensuring that these are started on system startup, and rapidly restarted in the
event of unexpected shutdown.

After initial creation, the ObjectServer is managed through the administrator
client where most customization can be completed in real-time without service
interruption. The client may be deployed on any supported platform. A single
instance of the client may be used to manage all ObjectServers and process
control agents. You may also deploy multiple instances of the administrator.

It is not required that all components be deployed on the same hardware
platform.

Note: Localization support for products within the Netcool GUI Foundation
might vary according to product and version. Check that the language that you
want to display is supported in both the NGF and the products within it.

If you attempt to display an unsupported language in either the NGF or the
products within it, inconsistencies might occur between the language
displayed in the NGF and the language displayed in the products.

94 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 2-28 shows a typical single-tiered installation.

Figure 2-28 Typical Netcool/OMNIbus environment

2.2.10 Two-tiered architecture

The distributed processing capabilities of Netcool/OMNIbus accommodate high
event throughput and large user communities. ObjectServers are deployed in
tiers to separate the loads of distinct functional capabilities, thereby distributing
the total processing load across multiple servers.

A two-tiered system is a combination of aggregation and display ObjectServers
with supporting gateway configurations. In a two-tiered system, Native Desktop
(and Netcool/Webtop) sessions read from display ObjectServers and write back
to both aggregation and display-layer ObjectServers.

Probe clients connect to the aggregation system, as it also functions like a
collection layer system. Netcool/Precision IP/TN and other Netcool suite
components except Netcool/Webtop connect to the aggregation system.

 Chapter 2. Architecture 95

A two-tier architecture is shown in Figure 2-29.

Figure 2-29 Two-tier architecture

2.2.11 Three-tiered architecture

A three-tiered system has distinct functions for the three layers of ObjectServers.
All probes connect through a collection layer ObjectServer. All alarms are
therefore processed first by an ObjectServer at the collection layer. The
collection layer exists to buffer the aggregation system from alarm storms and to
perform deduplication.

Since rows are deduplicated at the collection layer, the aggregation layer is more
likely to scale than if hundreds of probes were directly connected. Put simply, the
collection layer exists to process inserts/reinserts. At regularly timed intervals,
the deduplicated events are forwarded to the aggregation system via the
collection/aggregation routing gateway.

96 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The display layer, just as with a two-tiered system, exists to process read
requests from native desktop or Netcool/Webtop sessions.

Lastly, with the desktop read load and insert load removed from the aggregation
layer system, the aggregation layer is free to house more data for longer periods
of time. Moreover, the aggregation layer can support more complicated
downstream integrations with ticketing systems and other Netcool suite
components.

The three-tier architecture is shown in Figure 2-30.

Figure 2-30 Three-tier architecture

Note: Large-scale Netcool/OMNIbus environments can be broken into two
major categories:

� High event throughput installations
� High desktop load installations

 Chapter 2. Architecture 97

2.2.12 Firewall considerations

In this section we discuss firewall considerations.

Port usage
By default, when an ObjectServer starts, an available port number is chosen for
the IDUC connection.

The communication direction between a Netcool probe and its configured
Netcool ObjectServer is established by the probe in direction of the Netcool
ObjectServer. Probes must use the host name and port combination that is
specified in the interface file for the server name. For example, if the host name
and port combination is “NCOMS fred 5101”, then the probe will only attempt to
connect to the NCOMS instance running on fred on port 5101.

IDUC clients require two connections: first, the connection to the port defined in
the interface file for the server. Second, the IDUC port of the ObjectServer, which
is automatically allocated by the operating system by default. The second can be
hardcoded by setting the Iduc.ListeningPort property. You need to specify the
IDUC port when accessing an ObjectServer protected by a firewall.

IDUC is a management channel that notifies the clients as to which events have
been inserted, deleted, or updated since the last refresh of that client's data. It is
used only by native desktop and gateway client connections.

Refer to the “IBM Tivoli Netcool default port usage” on page 375 for a list of ports.

Secure Sockets Layer
Netcool/OMNIbus supports the use of the Secure Sockets Layer (SSL) protocol
for communications between Netcool/OMNIbus servers and clients. When a
client initiates an SSL connection, the server presents the client with a certificate.
By reading the certificate, the client can determine whether the server is a
trusted source, and then accept (or reject) the connection.

The Netcool/OMNIbus components can also use an existing SSL tunnel
environment between the components for their communications.

Netcool/OMNIbus uses SSL for ObjectServer authentication. The certificate is
signed by a Certificate Authority (CA) (that is, a trusted party that guarantees the
identity of the certificate and its creator). The certificate contains the identity of a
server, the public key, and the digital signature of the certificate issuer.
Certificates serve two specific purposes:

� They provide authenticated proof to a client that the server that they connect
to is owned by the company or individual who has installed the certificate.

98 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� They contain the public key that the client uses to establish an encrypted
connection to the server.

A set of guidelines is provided for configuring the server editor to use encrypted
(SSL) connections, unencrypted (non-SSL) connections, or both. In the server
editor, you can enable encrypted connections, unencrypted connections, or both.

2.2.13 Configuring hardware for performance

In this section we discuss configuring hardware for performance.

Platform support
Netcool/OMNIbus may be deployed across mixed hardware environments.

Hardware sizing
Hardware sizing for Netcool/OMNIbus is dependent on a number of variables,
including event throughput, number of active events, number of users, and the
complexity of their desktop requirements, as well as integrations with other
Netcool and third-party components.

The predominant characteristic of Netcool/OMNIbus is its memory-resident
database. While there is no need to access the disk, it still takes time to read
through 100 MB of events out of memory (for example, as might happen with a
select * from the alerts table).

Another key contributor to the ObjectServer performance is the CPU speed. In
general, the faster the CPU, the better.

2.2.14 Netcool/OMNIbus rules: best practices for performance

There are several features of IBM Tivoli Netcool/OMNIbus and the OMNIbus
probe language that can be utilized to handle high event rates in a large
production environment. These techniques can be used in high traffic
environments, as well as used simply to process event suppression and other
event control situations:

� Using direct advantage of de-duplication to clear events

� Using the probe to send to tables other than alerts.status, or optionally to a
table in a different ObjectServer

� Keeping alarms that must be consolidated out of alerts.status

� Using the load functions within the probe rules

 Chapter 2. Architecture 99

Typically, the Generic Clear automation is used to match a resolution event to a
problem event and clear the event in the event list. With more control over
de-duplication in v7.x, you can use common identifiers for problem and resolution
events, and properly update the problem event to indicate the circumstances of
the event resolution. The benefits in using de-duplication for clearing are:

� Reduce Generic Clear overhead - The Generic Clear automation requires a
good deal of processing because of two stages of gathering potentially large
tables in memory.

� Instant Clearing - Clearing by deduplication happens instantly. Generic Clear
runs on a timed cycle.

� Reduce overall number of events - The number of events is reduced by half
for all cases implemented.

100 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Part 2 Strategies

The second part of this book includes two chapters that focus on TEC
environmental assessment and upgrade planning strategies:

� Chapter 3, “TEC environmental assessment and planning guidelines” on
page 103

� Chapter 4, “Upgrade strategies” on page 147

Part 2

© Copyright IBM Corp. 2008. All rights reserved. 101

102 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 3. TEC environmental
assessment and planning
guidelines

This aim of this chapter is to take a holistic view of the managed environment
and encourage the undertaking of an audit or inventory of the existing event
flows in order to understand the information that we need to gather, and
understand the considerations and constraints that will have an impact on the
upgrade strategy.

We cover the subject in a logical flow starting from the event sources, or inputs to
the server, through event processing, and then the outputs from the server.
While this is a logical way to conduct the survey, it is not necessarily the same
order in which we will recommend implementing the changes.

3

© Copyright IBM Corp. 2008. All rights reserved. 103

3.1 End-to-end event flow

Our aim is to highlight what needs to be collected to help the reader produce an
ordered plan of tasks, as a planning aid to approach the upgrade strategy, which
we cover in detail in Chapter 4, “Upgrade strategies” on page 147. We discuss:

� Event sources (adapters, applications, commands)
� Event manipulation (filtering and rules processing)
� Outputs to other systems (databases, trouble ticket systems)
� Actions via the console (manual and automated alerting)

Figure 3-1 shows the most common input sources and outputs that are typically
implemented.

Figure 3-1 Event processing (inputs and outputs

104 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Another way of putting this is that the objective of what you want to achieve may
well be the same, but we suggest, and indeed recommend, that the approach to
how you achieve this will in fact be different, to best exploit the new features of
Netcool/OMNIbus.

From the evidence that we have so far from previous customer experiences we
would normally expect the final list of activities to be shorter than the original list
of tasks, due to the out-of-the-box features of Netcool/OMNIbus.

Are all your event management activities really necessary
It may well be that the ‘audit will produce a list of activities (be they filters, pattern
matches, rules, or actions) that you now consider are:

� Obsolete, and can be dropped

Or, in other words:

– Why do we still send that alert to do that? Our operational procedures
changed months ago.

– Since our recent network or server upgrade we no longer need to worry
about that constraint.

– And so on.

� Poorly designed, or have just grown organically

– Now we have the full view. We can see efficiencies that we can make.

– Why do we do those two rule processes, when one would achieve the
same?

� Replaced by a new capability of OMNIbus

We no longer need rules to dup-detect or raise event severities.

� Still absolutely required in the same format

This is our most business-critical system and we must retain the same logic.

At the end of the chapter we provide a checklist that has entries for each of the
the following sections, and that provides a useful reference for the audit.

Note: While this will produce a list of tasks, it is not necessarily the intention or
the recommendation to produce a like-for-like mapping from how the Tivoli
Enterprise Console environment currently works to how Netcool/OMNIbus will
work in the future.

 Chapter 3. TEC environmental assessment and planning guidelines 105

3.2 Event source hosts

This is a good opportunity to take stock of all the event sources that typically flow
into the TEC server, and complete an audit or inventory of the systems that are
monitored and the type of sources currently implemented.

Ideally, we should be able to identify and capture all the possible managed
systems and event sources that may be out there in the managed environment,
but in reality the challenge will be that the inventory may be incomplete or not
fully documented. If you are in a position where there is a well documented and
fully defined environment then this will speed up the following process, but the
hints are intended to apply to all cases.

Most sites will have established methods for this already, so the following is list of
suggestions that you can pick and mix from, as appropriate, rather than a list of
instructions that you need to follow verbatim.

3.2.1 Tivoli framework commands

Tivoli framework-related commands can be used to discover the profiles
currently deployed and the list of systems subscribing to those adapter profiles.

� Example of commands to list profile managers and ACP profiles:

– wlookup -ar ProfileManager

ACP_Adapter 1938676155.1.709#TMF_CCMS::ProfileManager#
ACP_EP 1938676155.1.706#TMF_CCMS::ProfileManager#
ACPdefault 1938676155.1.660#TMF_CCMS::ProfileManager#

– wls -l @ProfileManager:ACP_Adapter

1938676155.1.708#ACP::Prof# ACP_windows_profile
1938676155.1.714#ACP::Prof# ACP_UNIX_logfile

� Example command to list subscribers to those profiles:

wgetsub @ProfileManager:ACP_UNIX_logfile

mondorf
bonn

� Command to dump out profile content details:

wlsac -l ACP_AIXlogfile

$ wlsac -l ACP_AIXLogfile
:::: record 0 ::::
Tue Oct 9 13:17:05 CDT 2007

106 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

#
tecad_logfile Configuration
#
TransportList=t1_
t1_Type=LCF
t1_Channels=c1_
c1_ServerLocation=@EventServer
EventMaxSize=4096
BufEvtPath=$TIVOLIHOME/tec/tecad_logfile@${AC_ID}.cache
PollInterval=30
Pre37Server=no
FQDomain=NO
LogSources=/tmp/applications
#
Filter:Class=Logfile_Base;
Filter:Class=Logfile_Sendmail;
Filter:Class=Amd_Unmounted;
Filter:Class=Amd_Mounted;
Filter:Class=TEC_Notice;msg=filter-out;

� General topology commands and scripts that can be downloaded from the
IBM Tivoli support Web site, such as the following:

– epreport.pl
– assess.pl

These will help aid the planning, as they list the names and numbers of
endpoints per managed node gateway and the general health and distribution of
endpoints over the Tivoli region.

3.2.2 Non-framework commands

For event sources that have not been deployed by the framework, and that may
have been distributed by software distribution or manually installed, other means
will be needed, such as using Tivoli Configuration Manager, Tivoli Application
Dependency Discovery Manager (TADDM), or user-defined scripts.

3.2.3 Other techniques

Other means can be deployed at the server side of the event flow to obtain the
locations and types of the sources by the events themselves that have been
received. While this is likely to be a quick and useful technique, it can only show
those that actually get to the TEC server, and so may miss out on infrequently
alerting systems that have events filtered out by a state correlation engine at a
gateway, for example.

 Chapter 3. TEC environmental assessment and planning guidelines 107

Given that cautionary note, techniques could be to use searches in wtdumprl,
use database sql, or use information taken directly from a Tivoli Data Warehouse
or other reporting system.

3.2.4 Safety net

Having said all the above, we recommend that planning for the upgrade includes
a period of time when there is a safety net mechanism so that events that come
from unexpected sources are not overlooked by the newly employed
ObjectServer and console. We describe this upgrade planning in detail in
Chapter 4, “Upgrade strategies” on page 147.

Unlike TEC, OMNIbus does not reject events that it cannot parse (that is, if it has
no baroc file). The probe rules have a catch all mechanism that sends a best
effort parse of an unknown event so that it may be investigated.

3.3 TEC source types

Table 3-1 shows the existing TEC event sources, the possible routes to get to the
ObjectServer, and the type of integration possible. We go through these event
sources and explore the options available.

Table 3-1 Event source routes to the ObjectServer

Event source Via TEC server Via EIF probe Via Netcool probe Synchronization

DM 3.7 Yes a No No No

ITM 5.1.x Yes No No No

ITM 6.1 Yes Yes No One-way

ITM 6.2 Yes Yes No Yes

NetView 7.1.4/5 Yes Yes Nv7 Partial

windows adapter Yes Yes NT eventlog No

unix syslogd Yes Yes Syslogd No

logfile adapter Yes Yes Logfile/syslog No

snmp adapter Yes No Snmp No

as400 adapter Yes Yes No No

wpostemsg Yes No No No

108 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

For example:

� If you are using ITM 5.1.2, integration is possible, but you need to retain the
TEC server until ITM is upgraded to 6.1 or 6.2.

� If you have as400 systems, you can use the TEC server or EIF probe, but not
a native Netcool probe.

� If you need to collect SNMP traps, these can go via the TEC server or use the
Netcool SNMP probe.

� NetView and ITM also have other options on uni-directional or bi-directional
event synchronization (see the next two sections).

3.3.1 IBM Tivoli Monitoring event sources

With ITM event sources you have a choice regarding the order in which you
upgrade ITM compared to diverting event sources from TEC to OMNIbus via the
EIF probe. In Table 3-1 on page 108 you can see that this is dependent on the
version of ITM.

ITM 5.1.x
Since the only available integration is via TEC, ITM must be upgraded before
migrating the event source to OMNIbus. We recommend that this is to ITM 6.2.

ITM 6.1
You have two choices here, and they should be based on the level of
ITM-to-TEC synchronization that you currently perform. If this is simply a
one-way flow of events into TEC, then you can divert to the EIF probe
straightaway. If, however, you have two-way console synchronization, then be
aware that this is not currently provided with the EIF probe and ITM 6.1, so you
would be losing functionality. We advise against upgrading to ITM 6.2 first.

postemsg Yes Yes No No

wpostzmsg Yes No No No

postzmsg Yes Yes No b No

a. The announced IBM Tivoli end of support date for Distributed Monitoring 3.7 was April 2008. For the
purposes of this book we assume that plans have been made to migrate monitoring solutions on to
ITM 5.x or 6.x for supportability. Sending DM3.7 events was not tested, but in theory the
compatibility will be the same as the ITM 5.1.x integration.

b. Integration could be achieved via a logfile probe if the postzmsg logic is changed to write to a logfile
instead of sending a message.

Event source Via TEC server Via EIF probe Via Netcool probe Synchronization

 Chapter 3. TEC environmental assessment and planning guidelines 109

ITM 6.2
Here the functionality is identical, so that two-way functionality is provided with
either TEC or the EIF probe, so you can immediately divert the event source.
Moving to ITM 6.2 will also give you more integration options, as it allows parallel
event flows into both TEC and OMNIbus EIF event destinations. This could be
useful for parallel running in an integrated solution or a testing phase. For details
on configuring this, refer to 7.3, “Integration between Netcool/OMNIbus and IBM
Tivoli Monitoring” on page 290.

3.3.2 Omegamon agent sources

We assume that any events coming from an Omegamon (formerly Candle®)
agent source will have gone via an ITM 6.1 or 6.2 TEMS first, so they can be
considered in the same way as for the ITM 6.1/6.2 sources.

3.3.3 NetView event sources

Many existing Tivoli environments will incorporate a NetView server, which will
generate network and managed node availability events.

3.3.4 NetView forwarding to OMNIbus options

There are currently a few choices here for the way forward. We have outlined the
four main ones.

Forwarding via the EIF Probe
Below we discuss the advantages and disadvantages of forwarding via the EIF
probe.

Advantages
NetView event forwarding can easily be diverted to send to the Netcool EIF
probe. The simplest option is to make a single configuration change on the
NetView environment to change the configuration file (tecint.conf on UNIX,
tecad_nv6k on Windows) to point to the port of the EIF probe rather than the
reception port of the TEC server. NetView events will appear in OMNIbus with a
meaningful text, with no other configuration required.

Note: The best practice for integration with OMNIbus is to upgrade to ITM 6.2
as soon as possible.

110 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Disadvantages
This will just achieve one-way integration. If that is all you are doing currently
then that is fine. If, however, there is two-way integration and TEC and NetView
event consoles are currently kept synchronized by existing TEC rules, then we
need to either keep the TEC server in the event flow or consider some other
options, as this synchronization is not currently provided by the NetView to
OMNIbus integration package.

Secondly, the EIF probe option does not provide the same functionality when
compared to the correlation rules provided by TEC in netview.rls, although the
default automations in the ObjectServer go some way (for example, if NetView
sends a NodeDown, then a NodeUp for the same host name the former will be
closed (set to severity 0 and cleared)). This works (as the events are from the
same class or alert group) in the same way that the netview.rls does.

It is worth noting that the reason for this rule in TEC is that a large node or router
going down could potentially send large numbers of interface down messages
and clutter or even fill the console. By default OMNIbus will handle this much
better, and de-duplication means only one interface down event, with a tally field
of the number of duplicate events.

However, the netview.rls also has several other correlation rules, such as an
InterfaceDown followed by a NodeDown or RouterDown will close the
InterfaceDown event (as it was an effect, not the cause). In the EIF probe, or
OMNIbus, this will not be matched by default, as they are from different TEC
classes (alert groups), so the OMNIbus attribute field will not match. This could
be achieved by changing the appropriate settings of the generic fields in the
rules, or by adding a trigger rule, as described in the note below.

You will still need to address upgrading NetView to the strategic IBM Tivoli
Network Manager product before end of product support of NetView (currently
the same time scale as TEC, in 2012.)

Probe for Tivoli NetView
In this section we discuss the advantages and disadvantages of the probe for
Tivoli NetView.

Note: If you do wish to replicate the same behavior, this needs to be handled
by an automation, or trigger. In 7.2.6, “Automatic event management
customization” on page 284, we provide a sample temporal trigger that can be
implemented at the ObjectServer to illustrate how to achieve this correlation.
Also note that this is not the entire functionality of the netview.rls, just a
sample of the most useful rule, that can be adapted for other required
correlation rules.

 Chapter 3. TEC environmental assessment and planning guidelines 111

Advantages
This may be a useful option for a NetView customer who is not a TEC user, and
who wants to send snmptraps directly to OMNIbus, and so would not need the
EIF probe for any other source. This acquires event data directly from the trapd
daemon on a NetView system and captures the raw traps to forward to OMNIbus
direct. There is a rules file that can be supplemented with additional Netcool
Knowledge Library entries (based on the trap’s Enterprise OID information).

Disadvantages
As with the EIF probe option above, this probe only provides one-way
integration, and does not include the correlation rules of TEC’s netview.rls. The
probe must be installed on the NetView server, and this is additional installation
effort, configuration, and overhead, compared to utilizing an EIF probe. It is also
the case that the supplied rules require additional knowledge library installation
and configuration. Otherwise, the events appear on the OMNIbus event list as
unfriendly OIDs, and even simple NodeUp/NodeDown correlation is not
performed.

So if you have an existing EIF probe configured, we recommend using that and
enhancing the rules as described previously.

You will still need to address upgrading NetView to the strategic IBM Tivoli
Network Manager product before end of product support of NetView.

Forward via the existing TEC server to OMNIbus
In this section we discuss the advantages and disadvantages of forwarding via
the existing TEC server to OMNIbus.

Advantages
No configuration changes are required at the NetView server. All existing
synchronization with TEC is maintained, and assuming that the TEC/OMNIbus
two-way synchronization is implemented via the EIF gateway, changes should
be reflected in OMNIbus too. Existing correlation is also performed by the TEC
netview.rls. This is the least-effort option. It maybe a valid approach on the path
to the next upgrade option.

Disadvantages
This is only a gradual step forward in upgrading. At some point this may mean
that the TEC server is remaining purely to handle network events from NetView.
It should be seen as an interim stage only.

You will still need to address upgrading NetView to the strategic IBM Tivoli
Network Manager product before end-of-product support of NetView (currently
the same time scale as TEC, in 2012.)

112 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Upgrade NetView to IBM Tivoli Network Manager Entry Edition
In this section we discuss upgrading NetView to IBM Tivoli Network Manager
Entry Edition.

Advantages
A new option is available to NetView customers with the product IBM Tivoli
Network Manager Entry Edition Version 3.7 (released September 2007). This is
the strategic upgrade path for NetView customers and is based on the Netcool
Precision/IP technology and therefore allows the network event sources to be
greatly enhanced by new capabilities and has very tight integration with
OMNIbus, and in fact includes a limited use, embedded ObjectServer.

We assume in this book that this product is not deployed in the existing TEC
environment, but it is the recommended strategic way forward to integrate
network management events with OMNIbus.

For more information about this topic see Migrating to Netcool/Precision for IP
Networks - Best practices for migrating from IBM Tivoli NetView, SG24-7375.

Disadvantages
This is obviously an additional upgrade project that would be required, and it
may or may not make sense to tackle it at the same time as the TEC to OMNIbus
upgrade process. This will be a decision based on available resources and
business needs, as, technically, upgrading in either order is possible.

3.3.5 Windows event log messages

The recommended option to collect messages from the Windows event log in the
Netcool product suite is the probe for Windows NT® event log, which performs
an almost identical role to the equivalent TEC event log adapter “tecad_win”.
Previous options, such as using Netcool System Service Monitors, which have a
different functionality, are now being replaced by the ITM offerings.

The Windows NT event log probe is able to perform the same granularity as
pre-filtering by the TEC adapter, in that it can selectively filter in or out security,
system, or application messages. Finer granularity is also possible by using rules
at the probe level to perform filtering of specific messages or message IDs. Full
configuration details are available in 7.5, “Migrating the TEC Windows event log
adapter” on page 322.

An interim option for the upgrade strategy here is to route the existing TEC
adapter profiles to send messages via the Netcool EIF probe, and on to
OMNIbus.

 Chapter 3. TEC environmental assessment and planning guidelines 113

3.3.6 UNIX and Linux syslog messages

The equivalent Netcool probe to the TEC logfile adapter reading UNIX and linux
syslog messages is the syslog probe. There is a similar offering called the
syslogd probe, which provides the syslog daemon functionality as well. Since
most production quality operating systems will already have a syslog daemon
active and configured, we chose to use the syslog probe, which most closely
matches the TEC offering.

The syslog probe works in exactly the same way as the TEC adapter in reading
from a named pipe that the operating system’s syslog daemon has configured to
write specific messages to. In fact, a simple upgrade step is to copy the syntax
from the TEC adapter entry and have a parallel output, one read by the adapter
and one by the probe. Like all probes, the pattern matching is performed in the
probe rules file.

Like the Windows adapter, an interim option for the upgrade strategy here is to
route the existing TEC adapter profiles to send messages to the Netcool EIF
probe and then on to OMNIbus.

3.3.7 Logfile messages

Flat file application log messages can be handled by either the syslog probe
mentioned above, which can monitor a flat file for messages, or the generic
logfile probe (GLF). Both were installed, tested, and utilized for different
scenarios in the lab and used in Chapter 6, “Event processing” on page 187.

As above, an interim option for the upgrade strategy here is to route the existing
TEC adapter profiles to send messages to OMNIbus via the Netcool EIF probe.

3.3.8 SNMP traps

The TEC SNMP adapter functionality can be replaced one for one with the
Netcool SNMP probe. They both require a degree of configuration in converting
MIB and OID definitions into something readable and useful, but the functionality
is equivalent. The number of vendors MIBs support are enhanced by making use
of the Netcool Knowledge Library (NcKL) rules files, which are regularly updated.

3.3.9 AS400 messages

The only support for the upgrade strategy here is to route the existing TEC as400
adapter profiles to send messages to the Netcool EIF probe and then on to

114 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

OMNIbus. However, this assumes that any specific rules logic that you may have
developed for as400 alerts will need to be migrated to OMNIbus too.

3.3.10 Command line sources (w)postemsg and (w)postzmsg

Many customers utilize these command-line binaries in scripts and Tivoli
Framework tasks to send an event to the TEC server, for a wide variety of
reasons, for example, to update the status of an application, provide a heartbeat
mechanism, or alert to a new event to operations.

This is likely to be quite a challenging task to discover and round up all the
possible places where one of these commands could be embedded. It is also
likely to be a place where the ‘ServerLocation’ (that is, @EventServer or the -S
hostname flag) is used and will need to be re configured.

Since there is no corresponding binary in Netcool, the best option is likely to be
to retain the binary (and we recommend using the postzmsg version, as it
supports a -P port option, so that you do not need to specify an external
configuration file) and redirect to the Netcool EIF probe rather than the TEC
event server.

Similarly, if the -f flag is used, to read an adapter configuration file, the
configuration file will almost certainly need modification to direct events to a
different server and port (that is those of the Netcool EIF probe).

Another possibility is to use postzmsg with the configuration setting of testmode
to write out the messages to a local logfile, which a Netcool logfile probe could
then monitor for updates.

Finally, the command could in theory be replaced with the Netcool nco_sql
command (or a wrapper script that contains this command), which makes sql
updates in the OMNIbus ObjectServer itself. This is only likely to be feasible or
desirable if the ObjectServer code is already installed locally on that system.

3.3.11 Custom EIF applications

In theory, if a custom application uses standard EIF communications to send to
TEC at the moment, then the EIF probe should be capable of receiving them

Note: Care must be taken if you decide to leave this adapter configuration file
in place, so it is not deleted should an ACP adapter profile residing on the
same system be deleted at a later date.

 Chapter 3. TEC environmental assessment and planning guidelines 115

instead. We have not tested any of these for this book, and any of these that do
exist should be thoroughly tested by the customer.

3.3.12 Tivoli Business Systems Manager (TBSM 3.1)

If you currently integrate TBSM 3.1 with TEC, then this is going to be a constraint
or at least a major consideration on the upgrade strategy. While it may be
possible to have events flowing from TBSM 3.1 to the EIF probe, in the same
way in which they do to TEC, the integration and synchronization is not two-way
with OMNIbus. Moreover, most customers forward events in the opposite
direction, from TEC to TBSM 3.1. In these scenarios the TEC server will need to
remain in the event flow picture until TBSM is upgraded to 4.1.

The Tivoli Business System Manager 4.1 (TBSM 4.1) release is integrated tightly
into the Netcool product suite and provides full integration with OMNIbus.
However, to integrate TBSM 4.1 with TEC, the event flow would have to go via
OMNIbus first.

3.4 Other planning considerations

Now we have a good idea of the number of systems involved and the
application-related integration constraints from the previous section. We are
starting to get an idea of those event sources that can be tackled immediately.
Similarly, those may need to be deferred until after an upgrade, or will need
upgrading prior to an upgrade to OMNIbus. This will help the planner build up a
time line of dependencies.

To add to this picture of application-related constraints are other site-specific
constraints, such as the network topology, the geography, bandwidth constraints,
firewalls, and proxies. We start with some deployment considerations.

3.4.1 Deployment considerations

Deploying Netcool components in a distributed environment is more of a
challenge than deploying Tivoli framework components. There is no equivalent
remote deployment mechanism as with a framework endpoint. The size of the
package to install and the configuration effort of a probe is greater than that of an
adapter, and there are also limitations on remote process execution and
cross-platform functionality, which we discuss later. On the positive side, with
OMNIbus 7.2, the previous requirement for a license server and licenses has
now been removed.

116 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Once the OMNIbus codeset is installed, the relevant probe software can be
downloaded and added. This can mean a relatively large footprint on the remote
server of 100 Mb for Windows and 150–175 Mb for Linux/UNIX, depending on
the operating system platform. This will require planning and scheduling for the
distribution of the code, as well as ensuring that sufficient space is available at
the target system.

It is not currently possible to bundle up a smaller software distribution of the
binaries required for the probe (which is typically only 300 kb), but this is a
consideration for future Netcool development. However, remember that a probe
is not necessarily located on every target system and, depending on the type of
probe, it may be listening or polling several targets.

Note: Currently, all Netcool products have to be installed via the Netcool
installer, which requires the full OMNIbus codeset to be downloaded to the
target in order to install the Netcool libraries and middleware. This includes the
remote execution mechanism process control, which would also mean a full
distribution to any target that requires a remote command execution.

 Chapter 3. TEC environmental assessment and planning guidelines 117

There are a few options available to handle these challenges and differences
(and to cope with networking and firewall considerations) aimed at minimizing
the deployed code, the network connections, and ports required.

� Configure several local targets to one probe.

Figure 3-2 Configure several local targets to one probe

As can be seen in Figure 3-2, it is not always necessary to have one probe
per target system (for example, the syslog process can be configured to send
to a remote system’s syslog, so one system can be a syslog host and have
the probe on that). This can scale very well, depending on the level of detail
required by the syslog messages. We are aware of one customer who has
hundreds of systems using one syslog host. It is likely in order to achieve
these numbers that the granularity of syslog messages will need to be
reduced from the default set that the TEC adapter syslog pipe is configured to
listen to.

118 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� Concentrate different probes on one system.

Figure 3-3 Concentrate probes on one system

If several different types of probe are required for a group of servers in one
location, all the probes can be physically located on one system, and then
only one system needs to communicate back to the ObjectServer, and only
one system will need to open up the ports.

Note: This target-probe communication is via UDP, whereas the rest of the
communications from the probe back to the ObjectServer are TCP. For this
reason we usually recommend locating the probe close to the target. Also,
some probes require installation on the same physical system.

 Chapter 3. TEC environmental assessment and planning guidelines 119

� Install a probe consolidation server or proxy server.

Figure 3-4 Install a probe consolidation server or proxy server

As seen in Figure 3-4, this is a server that allows concentration of
communications from several probes into one, for onward forwarding of
events to the ObjectServer. This is aimed more at limiting networking traffic
and coping with firewall constraints than with deployment issues.

� Install a collection or concentration layer ObjectServer remotely.

This is similar to the last option but involves putting an ObjectServer on the
remote site or the far side of a firewall. As this requires more overhead and
administration than installing a proxy server, this is a more complex scenario
that would only be recommended if the earlier options are not possible.

3.4.2 Scoping volumes and throughput of events

This discussion shows that calculating the exact number of probes required, in
relation to the numbers of TEC adapters currently deployed, is not an easy or
exact science.

120 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The other major factor is the performance, or throughput, of events that can be
handled per probe, and this will be very site specific depending on the type of
probes deployed, and the quality and efficiency of the rule programming
employed on the probe.

Quoting any hard facts here needs to consider the above disclaimers, but the
numbers are likely to be in the hundreds of events per second range.

If the current volumes of events in the TEC environment have been measured or
are known, then that should help with the planning, too, but, as mentioned
previously, there is not necessarily a like for like comparison.

3.4.3 Coping with event storms

In a large TEC environment there are often procedures put in place to prevent
event storms from swamping and possibly taking down the TEC server. Most of
the configuration work to do this is done at the TEC gateway component. In the
Netcool environment the networking consideration options mentioned above will
have an impact on where this could be achieved, and provide some tactics to
avoid event storms.

However, as we saw in the architecture chapter, the main messages are that this
is far less likely to be an issue due to the following two factors:

� The OMNIbus ObjectServer is designed to handle far more events per
second than TEC.

� If properly configured, the de-duplication rules at the probe level should
prevent this from occurring in the first place.

For detailed performance statistics see the Netcool/OMNIbus v7.0/v7.1
Performance & Scalability white paper.

3.4.4 TCP/IP port usage

Another TCP/IP networking difference is that by default a TEC adapter
communicates with a temporary or connection_less mode to the TEC gateway,
which means that a new connection is needed for each event. This can optionally
be changed to a permanent connection_oriented mode, which maintains the link
between adapter and gateway until taken down. By default, TEC gateways will
communicate to the TEC server by a connection_oriented mode.

The behavior of the OMNIbus probe to ObjectServer is to use a persistent
communication, like connection_oriented. This can have implications both in the
number of ports and sockets in use, and also for firewall considerations (for

 Chapter 3. TEC environmental assessment and planning guidelines 121

example, those that are configured to time out a connection if it has been idle for
a number of minutes). Most probes have a heartbeat or probe watch back to the
ObjectServer that serves to keep this link active.

A list of the default ports used by Netcool components can be found in “IBM Tivoli
Netcool default port usage” on page 375.

3.4.5 EIF probe considerations

One piece of the architecture to consider and monitor in an integrated
TEC/Netcool scenario is the EIF probe component. Previous tests in the TEC
and OMNIbus Integration Best Practices white paper have highlighted that this
may be a bottleneck on performance with figures quoted between 50–80
events/second, dependent on operating system and hardware configurations.

In our lab tests we found that both an EIF probe on Red Hat 4.0 on a VMware
server and one on AIX 5.3 on a P550 LPAR were able to handle over 1,100
events forwarded from a TEC server in approximately 75 seconds. We used the
replay mechanism of sendEvents.pl, so maybe our observed rate of 16
events/second was due to real events being used. Another possibility is that that
rate was as fast as the TEC server could process them and forward them on to
the probe.

To achieve a good throughput we also recommend ensuring the connection is
kept maintained (connection_oriented) between the TEC and the EIF probe. This
will avoid the overhead of setting up and dropping a connection
(connection_less) and perform much better.

We recommend configuring caching and increasing the default cache size for
resilience when forwarding, as it would cause the forwarding TEC server to stop
processing eventually if the EIF probe was down for any length of time.

So even though we did not find a bottleneck, this should still be considered when
implementing the scenarios in the following chapters. It may be that more than
one EIF probe is required on different servers depending on volumes. For
example, good practices could be to only handle and migrate one event source
type at one time so that this can be measured and controlled, or to implement
one EIF probe per event source type (that is, one for TEC events, one for
NetView, one for ITM).

3.4.6 Adapter configuration files and gateway configuration files

Routing events in the current TEC environment will help with the planning of
routes when moving to using the EIF probe or the other Netcool probes. The

122 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

gateway configuration can be set to route to a second destination for resilience
as follows.

This is how it works now in a TEC 3.9 EIF configuration file. These are the values
specified on the adapter (that is the endpoint or the non-framework source):

� ServerLocation=@EventServer

On receipt of the event, the tec_gateway will first try to send to the TEC
server using TME transport. If the TEC server is down, the tec_gateway will
send to the ServerLocation specified in the tec_gateway.conf file.

� ServerLocation=hostname or IP address (and optionally ServerPort=<port#>)

The tec_gateway will first try to send to the IP address (and <port#> port)
specified by the adapter using non-TME transport. If unsuccessful, the
tec_gateway will send to the ServerLocation specified in the
tec_gateway.conf file.

� No value specified for ServerLocation at the adapter

The tec_gateway will send to the ServerLocation specified in the
tec_gateway.conf file.

One tactical step on the upgrade path could be to modify the server and port
locations to route events to the EIF probe, or even create a second adapter
profile pointing to the EIF probe so that there is a parallel stream of events. If you
do this, then keep the above facts in mind.

As described earlier, the EIF probe can also have peer-peer failover configured
for resilience.

3.5 Distributed event processing

Before events are processed centrally in a TEC environment the events are
formatted at the adapter or source level. Additionally, filtering out of unwanted
events can be achieved at both the adapter and at the TEC gateway via the
SCE.

3.5.1 Formatting

Part of the audit will be to gather the information about what formatting has been
set up in the format (*.fmt) files in each of the ACP profiles deployed at the TEC
adapter, and the underlying logic behind this. In OMNIbus, this functionality is
handled by the probe rules file, and uses a very similar regular expression
pattern-matching process. The full set of regular expressions is available in the

 Chapter 3. TEC environmental assessment and planning guidelines 123

appendix of the Netcool Administration guide. In our testing in the lab, the
out-of-the-box solutions handled all the events that we captured from the syslog
and flat log files in a very similar way. So the main focus here would be any
complex customized format statements.

Figure 3-5 and Figure 3-6 on page 125 compare snippets from the format
statements of the adapter and the probe.

Figure 3-5 Sample TEC format statements

FORMAT Logfile_Base
%t %s %s*
hostname $2
fqhostname DEFAULT
date $1
origin DEFAULT
msg $3
END
FORMAT Logfile_automountd FOLLOWS Logfile_Base
%t %s automountd[%s]: %s*
pid $3
sub_source automountd
msg $4
END

124 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 3-6 Sample OMNIbus probe rules format statements

3.5.2 Filtering

The TEC adapter configuration (*.conf) file in the ACP profile will contain several
filter and pre-filter statements that filter out certain unwanted classes or types of
events from log files and system error logs.

This can be handled at either the OMNIbus probe level or at the ObjectServer.
The syslog and windows NT event log probe rules provide many typical filters
based on class-like names, out of the box, but there may not be an exact
correlation with customer-configured setups. This is likely to be an area where
close inspection of the configuration files is required (as detailed earlier, the
wlsac command will be useful), and there are many template probe rules that
can be adapted for use quite easily.

Examples are also provided in 3.8.3, “Filtering out events with specific content”
on page 131.

3.5.3 State correlation engine (SCE) processing

As we saw in the architecture section, the SCE can be deployed to filter and
collect events to reduce the volume of events in a TEC environment dramatically.

@Summary = $Details
@Node = $Token4
@Severity = 1
@Agent = $Token5
if(regmatch($Token5, "automountd.*"))

 $agent = "automountd"

 case "automountd":
 if(regmatch($Details, "^server ([^]+) not responding"))
{
 @Severity = 4
 @Type = 1
 @AlertKey = extract($Details, "server ([^]+) not
responding")
 }
{
 @Identifier = "@" + $Token4 + " -> " + $Details
}

 Chapter 3. TEC environmental assessment and planning guidelines 125

The use of the SCE is not particularly widespread, but the most commonly
deployed XML rules are the duplicate rules and the collector rules. For this audit
you should examine and note down the logic employed in these rules. This file is
typically located at the gateway, but can be deployed on a endpoint, so that
should be considered, too. The file, by default, is called tecroot.xml.

In the Netcool architecture there is no equivalent middle tier, so we cannot do a
simple transformation here. Much of the functionality is provided out of the box
by the de-duplication automation. Additional sophistication can be deployed at
the probe level, and there are several examples of this in Chapter 6, “Event
processing” on page 187. Alternatively, this can be achieved by creating an
ObjectServer trigger, as we see in the next section.

3.6 BAROC file definitions

Just before we consider event processing currently performed by the TEC rule
engine, we need to consider the class definition of the events as defined by the
TEC BAROC files.

The audit should also contain a list of all the BAROC files defined and loaded in
the customer’s active rulebase, and indeed potential rulebases. There are a few
ways in which this can be achieved via command line listing:

� wlscurrb - displays the current rulebase
� wrb -lsrb -path <rulebasename> - shows the path
� cat .load_classes from the TEC_CLASSES directory of the rulebase

Again, while the recommended approach here is to keep in mind the entire
picture rather than replicate one for one, there is a Netcool Java utility provided
located in the $OMNIHOME/bin directory called nco_baroc2sql that will make
this task much simpler.

What this will do is create sql insert statements to create a class hierarchy in the
OMNIbus ObjectServer database. This has two benefits: to allow automations
and triggers to be able to be based on a hierarchical parent-child class level, as
rules do now in TEC; and also to provide a meaningful name rather than a
number in the class field. This can also then let OMNIbus desktop tools take
actions on those meaningful class names. We show an example of this in 6.4,
“Support of TEC class hierarchy” on page 247.

126 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

To use the utility, do the above commands to get the current rulebase and active
classes. You will need to tar up the TEC_CLASSES directory and move them to
the system with the OMNIbus ObjectServer. Then running the following from the
same directory as the BAROCs files will create a text file of the classes:

$OMNIHOME/bin/nco_baroc2sql -baroc .load_classes -sql inserts.txt

Then after reviewing the inserts.txt file, to load these into the ObjectServer run:

$OMNIHOME/bin/nco_sql < inserts.txt

3.7 Central event processing (TEC rules)

This section explains how to manually analyze the TEC rulebase. As mentioned
earlier, when considering transforming the rules, there are distinct advantages to
taking a holistic approach, rather than attempting some form of one-to-one
mapping. Therefore, a utility would not be appropriate, and we would need to use
a manual process to go through the TEC rules in the current rulebase, analyzing
the common event processing tasks or rule types.

Once we have this we can transform this specification to the OMNIbus
environment, which will include moving the logic to both the ObjectServer and to
the probes, to create a new rule specification.

Again, there are command-line techniques using file listings and the wrb
command:

� wlscurrb - displays the current rulebase
� wrb -lsrb -path <rulebasename> - shows the path

The rules are held in the TEC_RULES directory, and the list of active rules in the
rule_sets_EventServer file. Of course, it is quite possible that a customer may
have a number of rulebases in production, or development that should be
included.

Note: It is not essential to insert these statements for the EIF probe and
ObjectServer to process and understand events sent via the EIF probe (that
is, you will not get the equivalent of a parsing failed message if you do not do
this).

 Chapter 3. TEC environmental assessment and planning guidelines 127

3.7.1 Frequently used rules

If you have ITM 6.1 or 6.2 you can utilize the information from the TEC health
and performance agent, which will show you the most commonly used rules in
your TEC environment. This might be a useful indicator of the priority of the rules
that you should examine for migration and also an idea of those that you can
really best leave behind.

3.7.2 Typical rule types

The TEC ruleset reference guide refers to five types of rules:

� Simple rules - Do something simple when an event comes in.

� Plain rule - Do something when an event arrives. Can use predicates.

� Change rule - Change event details. Take actions dependent on an operator.

� Timer rule - Do something when a timer expires, or wait before doing
something.

� Correlation rule - Establish a causal relationship between events.

As a starting point, it is likely that the simple and plain rules may be covered by
probe rules, whereas timer, change, and correlation rules are more likely to be
triggers and automations in the ObjectServer. This is not a hard and fast rule,
and there are exceptions.

Converting or coding the logic for actions taken on the first instance or on all
instances of a particular event are quite straightforward, as is clearing duplicates
of a particular event, or modifying an event’s attribute. More challenging are likely
to be the timer and more complex correlation style rules, which you will need to
be more creative about.

We recommend looking at the existing TEC rules, but in the context of the new
capabilities, and constraints of the new OMNIbus sql-based language and not to
try to replicate the function of every TEC rule predicate one for one.

3.7.3 Remote procedure execution

There is one exception to the above statement, where you should go through
and search for a particular predicate, and that is with any that deal with remote
execution of processes (exec_program) or remote execution of framework tasks
(exec_task) currently. It is important for planning the upgrade process to
understand if you do this currently in a TEC rule, so that the OMNIbus Process
Automation component (process control) can be installed and configured on
those hosts where running a remote process is required.

128 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

When an automation needs to run a program, the ObjectServer contacts the
process control agent on the target server, passing the automation information.
The remote target then runs the automation specified.

The ObjectServer only communicates with one PA (usually the one that started
it). Where processes are required to run on a different host to the ObjectServer, it
is the local PA that the ObjectServer communicates with. The local PA then
communicates with the remote PA.

Due to this architectural limitation, there may need to be some workarounds
deployed, especially for Windows systems, and it may be necessary to deploy
more than one ObjectServer.

3.8 Some event-processing examples

Previous surveys and investigations of many TEC rulebases from user groups
and customer implementations have found that they broadly fit into a small
number of rule types, listed below:

� Handling of duplicate events (simple and time or volume related)
� Filtering out events with specific content
� Enrichment of attributes in an event
� Correlation (cause and effect)
� Execution of an alert, task, or process
� Escalation of severity
� Forwarding events
� Heartbeat rules for monitoring system health
� Clearing (housekeeping and maintenance-based rules)

Note: Process control agents on Windows machines can only connect to
process control agents on other Windows machines. Process control agents
on UNIX machines can only connect to process control agents on other UNIX
machines. External procedures cannot pass between these different
environments. An update to the Windows process agent is planned that will
remove this restriction.

Note: We provide some non-technical examples of these later in this chapter,
and then for the rules programmer, fully detailed worked examples are
provided in 6.2, “Event processing migration” on page 189.

 Chapter 3. TEC environmental assessment and planning guidelines 129

3.8.1 General suggestions

Here are some general suggestions for event handling:

� Try to handle event processing as close to the event source as possible.

� Before developing, check the default supplied triggers and automations.

� Install the Netcool Knowledge Library for best practice rules files.

� For event enrichment use probe lookup files (similar to TEC fact files).

� Enrich the OMNIbus database schema only for the most commonly used
attributes.

Let us look at the typical event handling scenarios starting with handling of
duplicate events. Each of the following sections will have a common description
of the event scenario before a description of the implementation in TEC or SCE
(if appropriate) and then the OMNIbus deployment. This should help you gauge
the amount of effort required for each type of rule.

3.8.2 Handling of duplicate events

In this section we discuss the handling of duplicate events.

Common description of the scenario
Here duplicate events are sent repeatedly from an event source. Only a single
event containing the newest event information should be seen on the event
console.

TEC implementation
A baroc class with the dup_detect modifier for specific slots must be defined first.
Then we can have two possible solutions:

� Create a specific rule for this event class or a generic rule for all event
classes. Define a reception action that updates the older event with current
information from the new duplicate event, and then drops the newly arrived
event.

� Create a specific rule for this event class or a generic rule for all event
classes. Define a reception action that closes the older duplicate event and
leaves the newly arrived event untouched.

Implementation with the SCE
Define a threshold or collector rule with an appropriate time interval.

130 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

OMNIbus implementation
The standard deduplication can be used for the first solution, but for the second
one the standard deduplication needs some modification.

3.8.3 Filtering out events with specific content

In this section we discuss filtering out events with specific content.

Common description of the scenario
An event coming from server xyz should be shown on the console, except when
the msg is equal to “mmmm”.

TEC implementation
There are two options:

� Create a filter for the logfile adapter. Define the appropriate class and
compare the source for the msg field.

� Create a specific rule for this event source. Define a reception action that
compares the host name and the msg. If both are true, then the incoming
event is dropped.

Implementation with the SCE
Define a match rule with an appropriate comparison to the content of the host
name and the message.

OMNIbus implementation
There are two options:

� Create a rule file for the probe. Compare the msg field if it is true, then discard
the event.

� Put a check in a pre-insert trigger such as the new_row trigger, and if the field
matches "mmmm", cancel the operation. For example:

if (new.msg = 'mmmm') then
cancel;

end if;

3.8.4 Actions for too many events in a defined time frame

In this section we discuss actions for too many events in a defined time frame.

 Chapter 3. TEC environmental assessment and planning guidelines 131

Common description of the scenario
If one event type arrives x times in y minutes then raise the severity to critical.

TEC implementation
Create a specific rule for this event class. A reception action, triggered by the
new duplicate event, searches for an older duplicate event and examines its
arrival time and repeat count.

Implementation with the SCE
Define a threshold rule with an appropriate time interval.

OMNIbus implementation
For the OMNIbus implementation, two supplied probe functions, ‘updateload’
and ‘geteventcount’, can be used to measure the number of occurrences of a
specified event x in y minutes. This can be used to create a procedure to raise
the event severity.

It is also possible to create a timed array window at the probe level to handle this
situation.

3.8.5 Filling an attribute dependent on another field’s content

In this section we discuss filling an attribute dependent on another field’s content.

Common description of the scenario
Based on the naming conventions of servers, the platform field is filled with the
platform type.

TEC implementation
A generic rule is triggered by all arriving events. In a reception action, the host
name is parsed. Based on that key, a platform field is filled with the value
Windows. The use of fact files is a common implementation here.

OMNIbus implementation
Use the following steps:

1. Use lookup tables at the probe level to resolve. We recommend this for
performance.

2. Add the column “platform” to the ObjectServer. Define a database trigger that
populates the OMNIbus platform field by parsing the information from the
node attribute.

132 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3.8.6 Handling of correlations (cause, effect, and clearing events)

In this section we discuss handling of correlations (cause, effect, and clearing
events).

Common description of the scenario
At the source, the following events are raised: cause, effect, and clearing. The
operator should see only the cause event and no effect event. After the clearing
event arrives, the cause event should no longer be shown on the event console.

TEC implementation
Create specific rules for these event classes. Link the effect events to the cause
event at arrival, and close the effect events. Close the cause event when the
clearing event arrives and discard the clearing event.

OMNIbus implementation
Use the default correlation behavior of the generic_clear automation for simple
correlations. For more complex correlations, the user should take the existing
generic_clear automation as a starting point and create new triggers as
appropriate.

3.8.7 Local and remote script execution

In this section we discuss local and remote script execution.

Common description of the scenario
When an event arrives, a specific program has to be executed locally or remotely
under a specific GID/UID.

TEC implementation
Create a specific rule for this event class. In a reception action call a local script
or start the execution of a TME task on a remote endpoint.

OMNIbus implementation
Create a database trigger that starts an external procedure, locally or remotely,
through process control.

3.8.8 Escalation of the severity of events

In this section we discuss escalation of the severity of events.

 Chapter 3. TEC environmental assessment and planning guidelines 133

Common description of the scenario
If an event is not closed 10 minutes after arriving, set its severity to critical.

TEC implementation
Create a specific rule for this event class. Set a timer for 10 minutes in a
reception action. If it is still open, set the severity to critical.

OMNIbus implementation
Create a temporal trigger that sets to 5 the severity of events that have not been
acknowledged as arrived in the last 10 minutes. There is a default flash_not_ack
trigger that provides something similar, and operators can easily change event
severity via the console.

3.8.9 Forwarding of events

In this section we discuss the forwarding of events.

Common description of the scenario
Send an incoming event to a trouble ticketing system.

TEC implementation
Create a specific rule for this event class. Call a script that has access to the
contents of the event and passes these contents to the trouble ticketing software.

OMNIbus implementation
Execute an external procedure, or install a gateway for a trouble ticketing system
or for an external database.

3.9 TEC outputs

Here we consider the third phase of the end-to-end event flow: the outputs from
the central rules engine to other interested parts of the organization, be it for help
desks, event notification, automation, links to other applications, or historical
reporting.

Note: Again, refer to Chapter 6, “Event processing” on page 187, for fully
worked examples of the above and more scenarios. The aim of the aim of the
above is to give an idea of the required changes.

134 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3.9.1 TEC tasks

TEC tasks are often used within TEC rules. With these you can execute scripts
and programs on the TEC server, on Tivoli managed nodes, or on endpoints to
restart a process or to alert someone via SMS or e-mail.

As mentioned, to execute programs by OMNIbus on a local or remote site you
must set up a process control agent to control the targets first (this is equivalent
to having the Tivoli endpoints installed to run the task on), so you should audit
the number and type of tasks in the current implementation.

Many tasks are specific to TEC, and not relevant to OMNIbus, but others do have
equivalents. For example:

� The Popup_Message task in TEC can be replaced with an event notification
in OMNIbus.

� The Send_Email task in TEC can be replaced with a procedure called
send_email, fired by a mail_on_critical trigger.

In general, OMNIbus is very function rich in the areas of notifications and ease of
customization of the operator console.

3.9.2 Forwarding to other TEC servers (manager of managers)

If you currently have a hierarchy of TEC servers or two TEC servers are
forwarded to for resilience, then you will be using the tec_forward or
re_send_event_conf predicates in TEC rules. As we will see in the upgrade
scenarios, all of these combinations are technically possible, so for planning
purposes this forwarding should not be an issue.

Tests that we performed showed that the TEC rule, rather than the receiving
probe or ObjectServer, was the limiting factor. We recommend that caching of
the forwarding events is properly configured to cope with any short-term
bottlenecks or server outages. The size of this will depend on the event rates and
average event sizes.

3.9.3 Incident management systems

If specific rules are in place to send alerts or messages to other applications,
such as trouble ticketing systems like Remedy ARS or IBM Maximo®, then this
will require careful planning and coordination for these to be migrated. In many
cases OMNIbus can provide a bi-directional or uni-directional gateway
application between the ObjectServer and the application, and it is likely that the

 Chapter 3. TEC environmental assessment and planning guidelines 135

integration will be more straightforward than with TEC (although we did not
implement this during the book).

For a complete and up-to-date list of the available gateways see the IBM
Netcool/OMNIbus Probe and Gateway 7.2, SC23-6373.

3.9.4 Service-level reporting and auditing databases

Many customers will capture details from the event database for use by
service-level and other reporting systems. Here again, OMNIbus gateways are
available for most applications. If it is an in-house database that is the backend,
then an OMNIbus ODBC gateway to a relational database can be implemented
to do this.

At the time of writing, a Tivoli Data Warehouse gateway integration is not
available, but this is planned for release in early 2008.

Collecting data for auditing purposes can also be done in OMNIbus.

Finally, there is also the option of using other tools such as Netcool/Reporter or
Netcool/Provisio for performance and trend analysis, which are designed for
these functions and tightly integrated with the ObjectServer.

3.10 Desktop upgrade (TEC console)

It is likely that most customers will want or need to keep the same operational
structure of event groups and views, and also preserve the same roles and
authorization of the existing users. It is possible to export the current TEC
console settings, but this is only designed for import by another TEC server. It
would be desirable to dump this out for import into the ObjectServer desktop and
Netcool/Webtop.

It is beyond the scope of this book to provide a comprehensive script to output all
the TEC operator roles and event group filters, as that is part of the serialized
TEC database object and requires a Java program to access it. While in theory it
would be possible to produce a tool or utility to convert TEC operator information
into OMNIbus user information (and this is currently being evaluated by
development), there is extra functionality in OMNIbus that would need to be
added, so this is probably best done manually if there is a small list.

If, however, there is a large number of users or groups to add, then we
recommend building templates and utilizing the $OMNIHOME/etc/security.sql
script to add the details about what permissions are granted to each role and

136 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

group and then using the lists created from the TEC console sql commands in
Figure 3-7 in a loop as input into a script to add the remaining roles, groups, and
users.

Figure 3-7 Suggested commands to extract TEC console information

See the Netcool/OMNIbus Installation and Deployment Guide for a full
discussion, as the level of functionality is slightly different from the TEC model in
concept, but here are some suggested nco_sql statements.

Figure 3-8 Suggested nco_sql statements

In addition to the above, it is possible to set a restriction filter to limit the rows
and tables that a user or group of users can see. There are also OMNIbus View

su - db2inst1
connect to tec
select * from tec_t_assign_op > file_op_IDs_names
select * from tec_t_assign_eg > file_con_ID_group_ID
select group_id,name from tec_t_event_groups > file_group_ID_names
select console_id,name from tec_t_consoles >file_con_ID_op_name

First create the roles...:
CREATE ROLE 'role_name'
[ID identifier]
[COMMENT 'comment_string'];
then create the groups....:
CREATE GROUP 'group_name'
[ID identifier]
[COMMENT 'comment_string']
[MEMBERS 'user_name', ...] ;
Then finally the users...:
CREATE USER 'user_name'
[ID identifier]
FULL NAME 'full_user_name'
[PASSWORD 'password' [ENCRYPTED]]
[PAM { TRUE | FALSE }]

Note: The above are suggestions for importing into the OMNIbus user tables
for native desktop use only. For import into the Netcool/Security Manager
model and therefore use by Netcool/Webtop, an additional export and import
stage is required.

 Chapter 3. TEC environmental assessment and planning guidelines 137

builder and Filter builder desktop tools that can be applied on a user-by-user
basis, and even customized canned views can also be created with a transient
event list, which references a filter file.

Desktop scalability
The lists created from the TEC database in the last section can also be used to
help plan the number of additional display ObjectServers that are required to
cope with very large numbers of concurrent operators. If the loading of the
desktop gets too high, then additional ObjectServers can be configured. Previous
studies have shown this may be in the region of 30–40 active users, but we did
not verify this in our lab setup.

3.11 Event view customization

Upgrade considerations for event view customizations.

3.11.1 TEC information button

Some customers utilize the feature in the TEC console to create context-related
help or operating instructions in a set of html formatted Web pages, accessed via
the information button. The information is based on event class type, allowing the
customer to build a context-related online knowledge system for troubleshooting.
The pages can be located on the same server or on a remote Web server.

The same functionality can be developed in the OMNIbus desktop. By default,
there is a column in the alerts.status database called URL that can be utilized
and a procedure called openurl. It is also possible to select an event, right-click,
and select the Open URL tool.

This together with the ability to easily import the BAROC class information with
the baroc2sql tool should mean that this data migration is a straightforward
process.

We provide an example in 6.5, “TEC information/URL information for events” on
page 256.

3.11.2 TEC custom buttons

It is possible for TEC operators to have up to three action buttons per console,
which can be configured to perform canned tasks or actions. The benefit is
typically for ease of operations, rather than having to use a command line. The
OMNIbus native desktop does not have exactly the same feature, but the same

138 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

functionality can be provided by creating a drop-down list of tools from the menu.
It should be possible to create a larger set of options if required.

3.11.3 Large event messages (greater than 255 characters)

Currently, in TEC the msg field slot maximum size is 255 characters, and there is
a long msg slot for an additional 4,000 characters (with a total limit of 4,096). If
you have these large messages in your event domain (and ITM 6.1 is a common
source of large messages), then by default we have observed that the OMNIbus
field that holds the tec messages when they are passed across (called summary’
truncates the message to 255 characters.

There a few straightforward ways in OMNIbus to handle this. The Summary
column could be extended, but as it is a default field, it might be better to create a
new column in the ObjectServer. This could have a definition of varchar 4000 in
the table, and additionally, a mapping in the probe rules would be required to add
this extra information.

Another option could be to use the extended attribute feature of OMNIbus to
concatenate the two TEC attribute fields together (up to a maximum of 4,096).
An example of the use of this appears in 6.3.4, “EIF rules file and extended
attributes” on page 244.

3.11.4 Operator actions

The operator actions in TEC vary slightly depending on whether the Java
console or Web console is used. This is comparable with the OMNIbus native
GUI and the NetCool/Webtop.

Java console:

� General preferences: refresh time, maximum age of closed events to display,
maximum number of events, and display trouble ticket success messages.

� Working queue: Classify the order of the appearance of columns (Time
Received, Class, Event Type, Severity, Hostname, Status, Sub-source,
Message) and the sorting preference (ascending or descending order).

� All events: Classify the order of the appearance of columns (Time Received,
Class, Event Type, Severity, Hostname, Status, Sub-source, Message) and
the sorting preference (ascending or descending order).

Note: The OMNIbus desktop GUIs can only display a maximum of 255
characters, so the only way to access the extra information would be via
command-line sql.

 Chapter 3. TEC environmental assessment and planning guidelines 139

� Filtering events: You can filter the events in the working queue based on
severity, status, and operator ownership.

Web console:

� Change user preferences: refresh rate, maximum number of events to show
on each page, severity counts and banner, and show the event severity as
(show the severity types).

� Sorting events: By default, events are sorted in the event viewer by the date
received field. You can sort events based on up to three event fields.

� Filtering events: You can filter the events in the working queue based on
severity, status, and operator ownership.

Netcool/OMNIbus implementation
Some preferences can be customized on the event viewer:

� Monitors tab: Show severity border, show count, show highest severity, show
lowest severity, show metric, show lavalamp, and show histogram.

� Refresh tab: timed refresh.

� Notification tab: Notify when iconized, when (new, change, delete events),
and how (ring bell, alert icon, open window, run external command).

� Flashing tab: Enable flashing.

� Misc tab: Show event list colors, show distribution summary, show toolbars,
jump button on by default, sort information details.

� Appearance of the event list: resizing columns, sorting columns.

Comparing the two sets of consoles, it appears that OMNIbus is more flexible,
more dynamic, and more customizable than TEC, and has some useful
additional features such as the ability to alter the severity of an event, take
ownership or delegate ownership, or escalate an event.

The performance of the desktops in loading and navigating menus also appears
to be far quicker on some comparisons we performed, giving an all-around better
user experience.

140 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3.11.5 Color patterns

Each product has a color pattern scheme to represent event severities. They are
almost equivalent. Figure 3-9 shows the colors and severity for TEC and
OMNIbus.

Figure 3-9 TEC and OMNIbus severity colors

It is possible to alter these colors for all users by changing the X11 app-default
configuration files, and it is possible to set up private color maps for use by
color-blind operators.

There are also good console integration options with ITM 6.1 and ITM 6.2 TEPS
for both TEC and OMNIbus consoles. ITM 6.2 has introduced the Common Event
Console (CEC). CEC provides an alternative method for integrating TEC and
OMNIbus console into the ITM situation alert view on the TEPS. The CEC is not
intended to provide all of the functionality of the native desktops of TEC or
OMNIbus. It provides a subset of acknowledging or closing style actions.
Therefore, the CEC is not designed as a strategic single console, but should be
seen as a proof of concept and aid for integration and upgrade.

3.12 Resource considerations skills

As with any new technology, there will be new skills required and a learning
curve. For some key individuals this may well be quite a steep curve, but for the
majority of operations staff OMNIbus is quite intuitive and straightforward to use.

3.12.1 Event-processing configuration

It is very much the case that some form of fast tracking is advisable here to use
IBM consultancy services and skills transfer. The main skill required for the

 Chapter 3. TEC environmental assessment and planning guidelines 141

administrator is standard sql knowledge, and the better this knowledge is the
more sophisticated the rules can become. This skill is likely to be the most
important resource required.

3.12.2 Installation, administration, and operations

Installing and administering OMNIbus requires a very methodical approach. We
show in Chapter 4, “Upgrade strategies” on page 147, where we recommend
changes to the default values for improved stability or ease of use. We also
recommend that plenty of time is given to get an environment stable and bedded
in and administrators familiar with the new concepts. Operationally, there are a
few subtle differences, and there is be a minimal amount of education for
orientation and the new features (particularly the escalation features) and tools.

142 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3.13 Checklist

The checklists in Figure 3-10 and Figure 3-11 on page 144 can be used or
modified to suit your requirements to assist in the taking of the audit.

Figure 3-10 Checklist - identify sources

 Chapter 3. TEC environmental assessment and planning guidelines 143

Figure 3-11 Checklist - identify output and console interface

3.14 Suggested testing plan

Below is a list of suggested steps to take when building a test environment:

1. Follow the guidelines of this chapter and conduct the survey or audit and be
aware of the constraints and limitations of your live environment and
differences in functionality of Netcool. Then use the checklist to try to ensure
that all areas are covered.

2. Collect some real events from your environment via wtdumprl,
parseEvents.pl, and sendEvents.pl.

3. Utilize an existing TEC or build a test TEC to run these events through. You
can optionally follow the steps in 5.1.2, “TEC installation and configuration” on
page 168.

Note: In an ideal case, it would seem that the obvious order in which to make
changes would be to first move the event sources, then the processing, and
then the desktop and the other outputs. When you are testing and building the
new environment this is probably the way it is approached. However, when
considering how the migration might have to be done in a live scenario, unless
you are fortunate enough to have the chance to change everything at once,
we recommend that the best practice is to take the reverse approach. This
approach has two advantages: first, it allows the main benefits of OMNIbus to
be realized faster, which are primarily at the back end rather than at the event
sources. Secondly, it allows a gradual phased migration of event sources,
which will be particularly useful in a very large environment. So this plan is in
the order that replicates how you may upgrade the live system.

144 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4. Build the OMNIbus environment, as detailed in 5.2, “Netcool/OMNIbus lab
environment” on page 168.

5. Add a forwarding rule as described in 7.1, “Adding a rule to forward raw
events to OMNIbus” on page 278, and send the TEC events via the
re_send_event.conf predicate and the EIF probe to the ObjectServer.

6. Add the user-related customizations:

a. Add the required roles, groups, and users, optionally using methods
described in “Desktop upgrade (TEC console)” on page 136, to assist you.

b. Build filters and views for operators to match TEC event groups.

c. Optionally, deploy the security manager and Webtop if you have not
already done so and import the users into there.

For the reason in the above note, the following steps are in the order in which
you might need to approach them during the upgrade, but can be followed in
any order for test purposes. All steps are dependent on whether you have the
event source.

7. Implement the event processing:

a. Automations, triggers, and probe rules, referring to Chapter 6, “Event
processing” on page 187. At this point you should have the OMNIbus
event list desktop looking how you want it.

b. Create desktop tools configured like the TEC information button and
custom buttons.

You should now be able to handle the events that you are going to have
flowing through the EIF probe in the long term.

8. Connect to any backend outputs. (You might need to simulate some of these
systems.)

Add gateways to test versions of backend databases, other TEC event
servers (managers of managers), and trouble ticketing systems, like Remedy
or Maximo.

9. Deploy test ITM sources to match your live environment. As mentioned,
ITM6.2 can be configured to send to parallel destinations, so this could be
utilized. If you are not planning to upgrade to ITM 6.2 first, then you will also
need test ITM 6.1 events, and if still on 5.1.1, they need to go via the test
TEC.

10.Implement the EIF probe rules as detailed in 7.3, “Integration between
Netcool/OMNIbus and IBM Tivoli Monitoring” on page 290.

a. Add the triggers for synchronization for ITM.

b. Add the Situation Update Forwarder (SUF).

11.Deploy a test NetView system (either monitor a live or test network).

 Chapter 3. TEC environmental assessment and planning guidelines 145

12.Implement the EIF probe rules for NetView, as described in 7.2, “Integration
between Netcool/OMNIbus and Tivoli NetView” on page 280.

a. In addition, add the temporal trigger example for NetView detailed in 7.2.6,
“Automatic event management customization” on page 284.

b. Develop any additional NetView triggers required based on this template.

13.Deploy and test other event sources. (In addition to using test systems,
depending on your networking, it may be possible to install a second TEC
adapter with the configuration pointing to the test EIF probe. It is also possible
to configure two syslog pipes on one system to get events in parallel, for
example.)

– Probes for syslog

– General logfile prob

– Probe for Windows NT event logs, as described in 7.5, “Migrating the TEC
Windows event log adapter” on page 322

– Sources from (w)postemsg and (w)postzmsg commands

14.Deploy Process Automation (PA) if you have not already done so.

Activate the triggers to do remote process execution logic. Remember that
currently the Windows PA and UNIX PA cannot be mixed.

15.Add and test any additional configuration, as described in Chapter 2,
“Architecture” on page 37. Also see the Netcool Installation And Deployment
Guide for more details.

– Failover and resilience
– Proxies
– Firewalls

16.You should now have a system ready for the following:

– Performance testing
– User acceptance testing
– Skills transfer or training

After some additional fine tuning from user feedback you will be ready to
deploy in production.

Upgrade project plan
The above steps could now form the broad headings for a project plan, and
depending on your environment, available resources, and skills, you may now be
able to put some time estimates to each step to start to form an upgrade plan.

146 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 4. Upgrade strategies

The are a number of options available when designing an upgrade to OMNIbus.
In this chapter we focus on two main approaches:

� Parallel installation, with all-at-once switchover
� Installation in phases, with coexistence during gradual switchover

For each approach, we have detailed the event flow, the advantages and
disadvantages, and made some suggestions regarding the typical customer
profile that this might fit.

We conclude this chapter by going into more detail regarding the phased
upgrade approach. We have used this strategy as the main focus of this book to
illustrate the way in which a mature TEC environment will most likely be
upgraded. It should be noted that we are not advocating that a phased approach
is superior (actually, the more straightforward that you can make the
replacement the better), but this strategy seems to better suit the potential for
different situational upgrade requirements that you may encounter.

Before we proceed to discuss the full upgrade strategies, we reference the
existing integration approaches that have been the subject of previous IBM white
papers (IBM Tivoli and Netcool Event Flow Integration), and have been widely
distributed as best practices. These have focussed on integrating the two event
management technologies together, in a manager of managers approach. They
detail how to do this with either TEC or OMNIbus as the master. It must be made
clear that these should be seen as interim approaches to combining the

4

© Copyright IBM Corp. 2008. All rights reserved. 147

technologies, rather than a strategic final picture of the event management
environment. Furthermore, these white papers do not describe how to upgrade
fully to OMNIbus to facilitate removal of TEC. That is the goal of this book.

148 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4.1 Event flow integration based on TEC

Figure 4-1 shows an overview of the event flow in a deployment where
Netcool/OMNIbus is added to provide TEC with additional event information.
Events are consolidated and managed from TEC. This strategy is described in
the Tivoli and Netcool Event Flow Integration1 white paper.

Figure 4-1 TEC as the manager of managers

As OMNIbus is added to this existing TEC environment, it can be configured to
send events to TEC through the installation of the Netcool/OMNIbus EIF
gateway. The gateway retrieves events from the OMNIbus server and sends
them to the TEC server using the EIF interface. Forward event synchronization
uses same mechanism to send to TEC the events that have been updated in
OMNIbus. To achieve the backward event synchronization (events that are
updated in TEC are sent to OMNIbus), the EIF probe has to be installed and
configured in addition.

1 http://catalog.lotus.com/wps/portal/topal/details?NavCode=1TW10EC01

 Chapter 4. Upgrade strategies 149

http://catalog.lotus.com/wps/portal/topal/details?NavCode=1TW10EC01

While this solution allows the customer to enrich the TEC environment with new
probe sources and help become familiar with other new features from the
Netcool suite, it does not progress very far along the upgrade route, and also has
the following disadvantages:

� Performance: The Netcool/OMNIbus EIF gateway is used in this integration
flow. The performance could be limited by the EIF mechanism if the volume of
events from OMNIbus is high. Secondly, if additional Netcool probe sources
are introduced, then they may overload an already stressed TEC server.

� Duplicate event consoles: There is no longer a single focal point for the
administration of events, but there are two valid event consoles, and a choice
about which one will be used is delegated to the customer.

150 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4.2 Event flow integration based on OMNIbus

Figure 4-2 shows a typical event flow for OMNIbus. This strategy is described in
the Tivoli and Netcool Event Flow Integration2 white paper.

Figure 4-2 OMNIbus as the manager of manager

TEC forwards events to Netcool/OMNIbus using event forwarding rules via the
Netcool/OMNIbus EIF probe. The forward event synchronization is implemented
so that status and severity changes in TEC are updated in OMNIbus. No other
event updates on the TEC server are synchronized with Netcool/OMNIbus. The
backward synchronization is implemented so that status and severity changes in
OMNIbus are updated in TEC.

This method has similar limitations on performance and potential duplication of
consoles, but is a preferable option to that described in 4.1, “Event flow
integration based on TEC” on page 149, as at least it provides a step toward the
2 http://catalog.lotus.com/wps/portal/topal/details?NavCode=1TW10EC01

 Chapter 4. Upgrade strategies 151

http://catalog.lotus.com/wps/portal/topal/details?NavCode=1TW10EC01

strategic goal of having an event management solution based on Netcool
technologies.

4.3 TEC replacement strategy

This strategy is based on building a stand-alone OMNIbus environment in
parallel to the existing TEC system, and switching over in a single phase. There
is no integration with any Tivoli components.

4.3.1 Event flow

4.3, “TEC replacement strategy” on page 152 shows a typical event flow for this
solution.

Figure 4-3 TEC replacement strategy

This solution is basically the one provided by a typical Netcool/OMNIbus
installation. Events are collected from the underlying infrastructure by probes and
monitors and sent to the ObjectServer for processing. The event list is the
console for event visualization and management.

Other event sources can be added to this architecture, such as Tivoli Network
Manager IP Edition and Tivoli Business Service Manager 4.1. The role of TNM is

152 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

the same of NetView for TEC, that is, network discovery and network failures
root cause analysis.

Further event enrichment features could be provided by Netcool/Impact.

4.3.2 Advantages

The advantages are:

� Ease of deployment: To install this kind of solution the customer can follow
the installation instructions provided step by step. The deployment, as pointed
out before, is quite straightforward, and the out-of-the-box features are
enough to represent a good starting point for monitoring.

� OMNIbus single console for monitoring: OMNIbus is the event manager of the
future, therefore this strategy is proactive and in line with IBM product
strategy.

� A fresh start redesign: In reality this option is the one most likely to completely
exploit all the best features of an OMNIbus design, without any constraints
from the earlier environment.

4.3.3 Disadvantages

The disadvantages are:

� No integration with the existing Tivoli environment: If the customer is
satisfactorily monitoring his infrastructure with the products of the Tivoli
Framework, there will be a big bang cut over to the OMNIbus environment
abruptly without migrating his rules, automations, and event sources.

� Possible loss of investment: This approach is probably only suitable for those
who have not made a large investment in configuring and programming TEC
rules, or who are prepared to redevelop.

4.3.4 Which scenarios this applies to

This solution is most suitable for customers who do not have any need to
maintain their existing environment, and wish to start with a fresh approach. They
do not have any requirements to integrate their Tivoli environment with
OMNIbus, and of course for those who have no Tivoli environment at all. They
will typically be customers with a small deployment of event sources, a
straightforward or even default rulebase setup. This can also be a good option
for a customer who no longer has, or never had, the skills in the TEC prolog
rules, for example.

 Chapter 4. Upgrade strategies 153

4.4 TEC to OMNIbus upgrade

This strategy aims to install an up-and-running OMNIbus infrastructure that is
completely integrated with an existing Tivoli environment in terms of event
sources and event management. The difference from the previously discussed
strategy lies in the fact that this solution takes into account the existing Tivoli
investment and allows a more gradual switchover process to OMNIbus.

4.4.1 Event flow

Figure 4-4 shows the required event flow in a TEC to OMNIbus upgrade solution.

Figure 4-4 TEC to OMNIbus upgrade

When a TEC and an OMNIbus environment are integrated, event information is
collected in a wide range of ways. Where possible, the approach consists of
replacing the TEC Adapter with Netcool probes and monitors, applying the
appropriate configuration required to replicate the original behavior of TEC
adapters.

Where this cannot be achieved, TEC adapters are not removed from the system,
but instead they are reconfigured to send events to the EIF probe instead of the
TEC server. A similar procedure is followed with ITM and NetView, but with more
integration options. In the future, on the basis of customers’ needs, NetView can
be replaced with Tivoli Network Manager IP Edition, which will send events
directly to OMNIbus.

154 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4.4.2 Advantages

The advantages are:

� No customer left behind: This solution is the best for customers who want to
upgrade from TEC to OMNIbus in a phased approach. They will have an
integrated new event management console that benefits both from the old
TEC automations and the new features, and they will keep on receiving alerts
from every source on their infrastructure without leaving anything uncovered.

� OMNIbus and Tivoli together: This solution allows an immediate take up of
the benefits of the new features of OMNIbus and combines the existing Tivoli
configuration, giving the chance to upgrade to a newer monitoring
infrastructure without losing the configurations previously used.

4.4.3 Disadvantages

The disadvantage is deployment. The deployment of this solution is not as
straightforward as the previous ones, but this is due to the fact that it covers the
evolution of the entire existing infrastructure. The main goal of this book is to
assist and guide customers through the entire process, hopefully, making it much
easier to tackle the upgrade process.

4.4.4 Who this applies to

This solution is designed for all those customers who wish to upgrade to the
benefits of OMNIbus, protecting and migrating as much of their TEC investment
as is appropriate.

After a deep analysis of the available strategies for the upgrade from TEC to
OMNIbus, we recommend that this solution can be applied to the widest range of
customers, and it is therefore the one that has been deployed in our lab
environment. It is appropriate for large and small implementations, and those
with quite sophisticated rulebases.

The next section discusses in more detail a description of the tasks that will lead
to setting up this strategic TEC to OMNIbus upgrade.

 Chapter 4. Upgrade strategies 155

4.5 The recommended strategy

When starting to plan an upgrade from TEC to OMNIbus, we imagined a typical
Tivoli Framework customer environment, as Figure 4-5 suggests.

Figure 4-5 Initial Tivoli customer environment

In this hypothetical customer environment, raw events are collected from the
following sources:

� TEC adapters (UNIX/Windows system log files, SNMP)
� ITM
� NetView

Events are sent through the TEC gateway to the TEC server, in which they are
managed through the rulebase and then stored in the DB2 database that is
installed with TEC. Operators use the TEC console as the event viewpoint, but
they could also use Tivoli Enterprise Portal. Trouble ticketing and reporting
systems are optional components of this architecture.

156 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The first step to go through on the path that leads to the upgrade, which consists
of installing an independent OMNIbus environment. At the end of this step, the
customer environment should look like Figure 4-6.

Figure 4-6 Customer environment at the end of the first step

At the end of the first step, the TEC environment works as normal, but an
additional forward rule added as the first rule in the rulebase sends events to the
EIF probe. The forward rule sends to the EIF probe the events collected from the
Tivoli sources before they are processed by the other rules of the rulebase.

 Chapter 4. Upgrade strategies 157

Therefore, all the events that are collected in the TEC server should be seen also
in the ObjectServer, but in their raw form.

This is not the same forwarding mechanism as is used in the Tivoli and Netcool
Integration package (TEC_OMNIbus.tar).

For the next steps we need to consider again the three main components of the
environment, as described in Chapter 3, “TEC environmental assessment and
planning guidelines” on page 103: the inputs, the processing, and the outputs.

The order in which you upgrade these components will depend on the complexity
of the environment, as discussed in the following sections.

Ideal (simple) case
In an ideal case, make changes to first move the event sources, then the event
processing, then the desktop and the other outputs.

When you are testing and building the new environment this is probably the way
it is approached. However, when considering how the migration might have to be
done in a live scenario, unless you are fortunate enough to have the chance to
change everything in one go, we recommend that the most realistic and therefore
best practice is to take the reverse approach.

Realistic (more complex) case
In a realistic case, migrate the event outputs and desktops, then the event
processing, and then gradually migrate the event sources.

This approach has two advantages: first, it allows the main benefits of OMNIbus
to be realized faster, which are primarily at the backend rather than at the event
sources. Secondly, it allows a gradual phased migration of event sources, which
will be particularly useful in a very large environment.

So first you need to consider all the outputs from the system and work on
migrating the interfaces (Netcool Gateways) to those applications such as
trouble ticketing, reporting, ODBC gateways for DB2 and other relational
databases. Similarly, make operational help desk related changes such as e-mail
and SMS, and optionally make the OMNIbus desktop the main focal point for
operations. Optionally, Webtop can be used for the visualization of events.

158 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

This goes hand in hand with the relevant event processing for those changes,
and result the process shown in Figure 4-7.

Figure 4-7 Customer environment at the end of the second stage

Further configuration using automations or probe rules can now be implemented
in addition to the features OMNIbus provides out of the box, in preparation for
moving the event sources.

The initial step that can be performed easily when migrating the event sources is
to change the destination of the events coming from ITM and NetView from the
TEC server to the EIF probe. The configuration files for this integration are

 Chapter 4. Upgrade strategies 159

provided in Chapter 5, “Upgrading to an IBM Tivoli Netcool environment” on
page 165, together with the appropriate instructions. At the end of this step, the
architecture should look like Figure 4-8.

Figure 4-8 Customer environment at the end of the third stage

Next, Netcool probes and Process Automation can be deployed into the
infrastructure. After evaluating whether the Netcool event collectors (probes and
monitors) can gather events from the same sources as TEC adapters did (with
either out-of-the-box features or with some rule enhancement), we can decide to
route the source through the EIF probe or use the native Netcool probe.

160 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In this phase TEC adapters can be quickly reconfigure to send to the EIF probe,
as an interim phase, and indeed some TEC sources will need to remain on there,
if it is their only means of integration. For other sources we can deploy the
relevant Netcool probes, such as the syslog, Windows NT Event Log, and SNMP
probe, and reconfigure to go directly to the ObjectServer.

Once all events are correctly processed by OMNIbus, and if there are no earlier
requirements for TEC, we can disable the forward rule from the TEC server to
OMNIbus.

At this point, the upgrade is almost complete. Now OMNIbus should handle
everything TEC did and maybe something more in terms of effectiveness,
efficiency, and coverage of the infrastructure.

Once we are happy with the result achieved, we can disable the TEC server and
enjoy our brand new OMNIbus environment (Figure 4-9).

Figure 4-9 Desired final configuration of the customer’s environment

 Chapter 4. Upgrade strategies 161

162 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Part 3 Implementation

In the final part of this book we provide three chapters that focus on providing
detailed guidance, examples, and how-to for system architects, developers, and
system administrators who need to plan and perform an upgrade from TEC to
Netcool/OMNIbus. The chapters are:

� Chapter 5, “Upgrading to an IBM Tivoli Netcool environment” on page 165
� Chapter 6, “Event processing” on page 187
� Chapter 7, “Configuring the event sources” on page 277.

Part 3

© Copyright IBM Corp. 2008. All rights reserved. 163

164 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 5. Upgrading to an IBM Tivoli
Netcool environment

This chapter describes upgrading from TEC to OMNIbus via the recommended
upgrade scenario, as outlined in Chapter 4, “Upgrade strategies” on page 147.

This first section of this chapter describes the lab that was set up to represent a
typical Tivoli event management environment, prior to testing and demonstrating
the upgrade scenarios.

The second and subsequent sections focus on some key technical
considerations when installing, configuring, and deploying a typical
Netcool/OMNIbus environment, with references to the official installation and
administration guides where appropriate.

5

© Copyright IBM Corp. 2008. All rights reserved. 165

5.1 Tivoli Enterprise Console prior to upgrade

The lab was set up to try to emulate a typical customer environment, with
integration from typical event sources. For clarity of explanation and diagrams
we have limited the scope to one per type of event source to demonstrate
functionality. This is illustrated in Figure 5-1.

Figure 5-1 TEC event flows as set up in the lab

5.1.1 Installed TEC components

In this section we provide a series of tables that show a summary of the key
components installed on each lab server, to build the typical environment prior to
upgrade to OMNIbus.

Table 5-1 Host : nottingham.itsc.austin.ibm.com

AIX Logfile Adapter TEC Server NetView

TEC Console DB2

nottingham.itsc.austin.ibm.com

Linux Logfile Adapter
Endpoint

Gateway
Receiver

TEC Gateway

Tecad_win
Non TME

ITM
bonn.itsc.austin.ibm.com mondorf.itsc.austin.ibm.com

salvador.itsc.austin.ibm.com

cairo.itsc.austin.ibm.com

Tivoli TMR server AIX 5.3

Tivoli Framework 4.1.1 fix pack 07

TEC server, UI, Console, ACF 3.9.0 fix pack 06

166 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Table 5-2 Host : mondorf.itsc.austin.ibm.com

Table 5-3 Host : bonn.itsc.austin.ibm.com

Table 5-4 Host : salvador.itsc.austin.ibm.com

Table 5-5 Host : cairo.itsc.austin.ibm.com (and server2.itsc.austin.ibm.com)

TEC Logfile adapter for AIX 3.9.0 fix pack 06

DB2 8.2 fix pack 07a

NetView 7.1.5

Tivoli managed node/gateway Red Hat 4.0

Tivoli Framework 4.1.1 fix pack 07

TEC ACF, Gateway 3.9.0 fix pack 06

TEC Gateway Receiver 3.9.0 fix pack 06

Tivoli endpoint Red Hat 4.0

Tivoli Framework 4.1.1 fix pack 07

TEC Logfile adapter for linux 3.9.0 fix pack 06

Non-Tivoli system Windows 2003 server

TEC Non-TME windows adapter 3.9.0 fix pack 06

TEC SNMP Adapter 3.9.0 fix pack 06

Server AIX 5.3

IBM Tivoli Monitoring 5.1.2, 6.1 and 6.2

EIF integration 6.1 and 6.2

Tivoli TMR server AIX 5.3

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 167

The full lab environment is shown in Figure 5-2, with TEC, ITM, and OMNIbus
servers in place.

Figure 5-2 Lab environment

5.1.2 TEC installation and configuration

We assume that the reader is familiar with setting up a TEC environment, so we
have not detailed those installation steps here. If you wish to refer to the process
used and configuration files for reference purposes, these can be found in “TEC
installation steps” on page 368 and “TEC event source generation commands
and scripts” on page 372.

5.2 Netcool/OMNIbus lab environment

In this section we describe our Netcool/OMNIbus lab environment setup.

168 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5.2.1 AIX lab environment for Netcool/OMNIbus

Figure 5-3 shows the lab environment for Netcool/OMNIbus on AIX.

Figure 5-3 Lab environment for Netcool/OMNIbus on AIX

Table 5-6 Host : bari.itsc.austin.ibm.com

Netcool server 2 AIX 5.3

OMNIbus ObjectServer 7.2

non-native probe 2.0

EIF probe 2.1

syslog probe 4.3

Knowledge library 1.3b

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

bari.itsc.austin.ibm.com

BARI

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

bari.itsc.austin.ibm.com

BARI

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

bari.itsc.austin.ibm.com

BARI

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

bari.itsc.austin.ibm.com

BARI

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 169

5.2.2 Red Hat environment for Netcool/OMNIbus

Figure 5-4 shows the lab environment for Netcool/OMNIbus on Red Hat.

Figure 5-4 Lab environment for Netcool/OMNIbus on Red Hat

Host information for the lab environment is shown in Table 5-7 and Table 5-8 on
page 171.

Table 5-7 Host : weimar.itsc.austin.ibm.com

Note: With Netcool/OMNIbus V7.2, Netcool/Security Manager V1.3, and
Netcool/Webtop V2.1, the license server is no longer required. It is an ongoing
process to remove licenses in the family of Netcool probes as well. Check that
you have the very latest version available. The installation steps described in
this chapter do not consider Flex licensing.

Netcool server 1 Red Hat 4.0

OMNIbus ObjectServer 7.2

Non-native probe 2.0

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

weimar.itsc.austin.ibm.com

WEIMAR

Security Manager

Webtop

Probe
nco_p_glf

ObjectServer
Probe

nco_p_syslog

Probe
nco_p_tivoli_eif

weimar.itsc.austin.ibm.com

WEIMAR

Security Manager

Webtop

170 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Table 5-8 Host : salvador.itsc.austin.ibm.com

5.3 Netcool/OMNIbus installation

Rather than repeat the information in the existing documentation, as this is liable
to change with new version updates, we advise you to follow the core product
documentation to acquire, install, configure, and deploy the Netcool OMNIbus
products. You can begin this process here with the Quick Start Guide for
OMNIbus 7.2, available online at the following location:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc_7.2.0/C145GEN.pdf

All of the latest product documentation can be found at the following location:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=
/com.ibm.netcool_OMNIbus.doc_7.2.0/welcome.htm

5.4 IBM Tivoli Netcool/OMNIbus configuration

In this section we briefly describe the configuration of the OMNIbus ObjectServer
performed on our AIX-based lab system.

5.4.1 ObjectServer database initialization

The “nco_dbinit” command creates an ObjectServer database. ObjectServer
databases are located under the /opt/netcool/omnibus/db directory. Without any
parameters there will be an ObjectServer called NCOMS created. We
recommend creating your own defined ObjectServer database name instead of
using the default name NCOMS. The default name will be created automatically
if no specific parameters are used with the command “nco_dbinit”.

EIF probe 2.1

Security manager 1.3

Webtop 2.1

Netcool probe Windows 2003 server

NT event log probe 7.2

Netcool server 1 Red Hat 4.0

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 171

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.2.0/C145GEN.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.2.0/welcome.htm

Example 5-1 shows how to set up an ObjectServer with name BARI.

Example 5-1 $OMNIHOME/bin/nco_dbinit

cd $OMNIHOME/bin/
./nco_dbinit -server BARI

5.4.2 ObjectServer interfaces omni.dat

The file “$NCHOME/etc/omni.dat” holds the base configuration for generating
the interfaces file with the command “$NCHOME/bin/nco_igen”.

The connections data file is used to create the interfaces file for
Netcool/OMNIbus ObjectServer communications. There might be occasions
when you need to edit the connections file directly, for example, on UNIX
systems that do not have a graphical interface.

Example 5-2 shows the interface configuration file omni.dat as an example of our
lab environment. This example also shows a high-availability configuration for
one primary and backup ObjectServer.

Example 5-2 $NCHOME/etc/omni.dat

#
omni.dat file as prototype for interfaces file
#
Ident: $Id: omni.dat 1.5 1999/07/13 09:34:20 chris Development $
#
[BARI]
{
 Primary: bari 4100
 Backup: bari 4500
}

[BARI_GATE]
{
 Primary: bari 4300
}

[BARI_PA]
{
 Primary: bari 4200
}

Note: ObjectServer names will be automatically truncated to 11 characters.
Use the “nco_igen -notrunc” command option for more than 11 characters.

172 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

[BARI_PROXY]
{
 Primary: bari 4400
}

5.4.3 Interfaces file generation

The command “nco_igen” in Example 5-3 generates the interfaces file based on
the configuration in the “omni.dat” described in Example 5-2 on page 172.

Example 5-3 $NCHOME/etc/omni.dat

cd $NCHOME/bin
./nco_igen -arch aix5 -in /opt/netcool/etc/omni.dat

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 173

Figure 5-5 shows configuring and generating the interface file over the native
GUI with the command “nco_xigen”.

Figure 5-5 $NCHOME/bin/nco_xigen

5.4.4 ObjectServer properties configuration

Configure the following parameters in /opt/netcool/omnibus/etc/BARI.props, as
shown in Example 5-4, for the created ObjectServer called BARI.

Example 5-4 shows the ObjectServer configuration from the lab environment.

Example 5-4 $OMNIHOME/etc/BARI.props

...
AlertSecurityModel: 0
AllowConnections: TRUE
AllowISQL: TRUE
AllowISQLWrite: TRUE

174 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

AllowTimedRefresh: FALSE
Auto.Debug: FALSE
Auto.Enabled: TRUE
Auto.StatsInterval: 60
BackupObjectServer: FALSE
Connections: 30
DTMaxTopRows: 100
DeleteLogging: FALSE
DeleteLogLevel: 0
DeleteLogSize: 1024
GWDeduplication: 0
Granularity: 60
Iduc.ListeningPort: 0
Ipc.SSLCertificate: ''
Ipc.SSLEnable: FALSE
Ipc.SSLPrivateKeyPassword: ''
MaxLogFileSize: 1024
Memstore.DataDirectory: '$OMNIHOME/db'
MessageLevel: 'debug'
MessageLog: '$OMNIHOME/log/BARI.log'
Name: 'BARI'
PA.Name: 'BARI_PA'
PA.Password: '6wJpmTtVj8G'
Profile: FALSE
ProfileStatsInterval: 60
PropsFile: '$OMNIHOME/etc/BARI.props'
RestrictPasswords: FALSE
RestrictProxySQL: FALSE
RestrictionUpdateCheck: TRUE
Sec.AuditLevel: 'warn'
UniqueLog: FALSE
...

5.4.5 Process Automation configuration

Netcool/OMNIbus process control agents may be deployed to manage the
running of the ObjectServer, gateways, and probes. Processes may be started
automatically on system startup. The agents will restart any process that stops
unexpectedly. System administrators may stop and start the processes via the
administrator client or from the command line.

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 175

Adding startscript “/etc/rc.nco_pa” and entry in “/etc/inittab”
The routine $OMNIHOME/install/startup/aix5install generates the startscript
“/etc/rc.nco_pa” and adds the entry “nco:2:once:/etc/rc.nco_pa > /dev/console
2>&1 # Start Netcool/OMNIbus in /etc/inittab”.

Example 5-5 shows how to generate the “/etc/rc.nco_pa startup” script for the
Process Automation deamon and addi an entry for the general process
dispatcher for AIX in “/etc/inittab”.

Example 5-5 Add the /etc/rc.nco_pa and entry in /etc/inittab

cd $OMNIHOME/install/startup
chmod 750 aix5install
./aix5install

Refer to “Netcool Process Automation startup script” on page 377, which shows
the related entries for the “rc.nco_pa” script in the “/etc/inittab” directory.

Configuring Process Automation
Edit the Process Automation properties file for configuring process that need to
be controlled by the Process Automation.

Example 5-6 shows the Process Automation configuration file.

Example 5-6 $OMNIBUS/etc/BARI_PA.conf

#NCO_PA3
#
Process Agent Daemon Configuration File 1.1
#

Note: All processes configured under Process Automation should be
controlled by process control (for example, "nco_pa_stop" and
"nco_pa_start"). Process Automation has no control if processes are stopped
and started manually, even if they are already configured within Process
Automation.

Note: Netcool/OMNIbus Process Automation is designed for controlling the
components of ObjectServer, probes, and gateways.

Note: Consider whether the ObjectServer should run under a specific user (for
example, Netcool). It needs to set up the Netcool environment and path
variables in the startscript “rc.nco_pa”.

176 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Ident: $Id: nco_pa.conf 1.3 2002/05/21 15:28:10 renate Development $
#

#
List of processes
#
nco_process 'MasterObjectServer'
{
 Command '$OMNIHOME/bin/nco_objserv -name BARI -pa BARI_PA -propsfile
$OMNIHOME/etc/BARI.props' run as 10000
 Host = 'bari'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_tivoli_eif'
{
 Command '$OMNIHOME/probes/nco_p_tivoli_eif -propsfile
$OMNIHOME/probes/aix5/tivoli_eif.props' run as 10000
 Host = 'bari'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_syslog'
{
 Command '$OMNIHOME/probes/nco_p_syslog -propsfile
$OMNIHOME/probes/aix5/syslog.props' run as 10000
 Host = 'bari'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_glf'

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 177

{
 Command '$OMNIHOME/probes/nco_p_glf -propsfile
$OMNIHOME/probes/aix5/glf.props' run as 10000
 Host = 'bari'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

#
List of Services
#
nco_service 'Core'
{
 ServiceType = Master
 ServiceStart = Auto
 process 'MasterObjectServer' NONE
 process 'nco_p_tivoli_eif' 5
 process 'nco_p_syslog' 5
 process 'nco_p_glf' 5
}

#
This service should be used to store processs that you want to temporarily
disable. Do not change the ServiceType or ServiceStart settings of this
process.
#
nco_service 'InactiveProcesses'
{
 ServiceType = Non-Master
 ServiceStart = Non-Auto
}

#
ROUTING TABLE
#
'user' - (optional) only required for secure mode PAD on target host
'user' must be member of UNIX group 'ncoadmin'
'password' - (optional) only required for secure mode PAD on target host
use nco_pa_crypt to encrypt.
nco_routing
{
 host 'bari' 'BARI_PA'
 host 'weimar' 'WEIMAR_PA'

178 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

}

Process Automation remote execution configuration
For connecting remote Process Automation daemons you have to configure the
configuration file in the section “nco_routing”. Specify the remote host name and
the name of the remote Process Automation. Consider that you have already
configured the ObjectServer properties with the parameters “PA.NAME” and
“PA.PASSWORD”.

5.4.6 ObjectServer startup

Start up the Netcool/OMNIbus ObjectServer over the system startup script and
the Process Automation daemon. The ObjectServer also can be started
manually on the command line.

Example 5-7 shows how to start the Process Automation daemon over the
startup script.

Example 5-7 Starting up ObjectServer over Process Automation

cd /etc
./rc.nco_pad

If you do not want to let the Netcool Process Automation start up and control the
ObjectServer, just start it manually with the command nco_objserv.

Example 5-8 shows how to start the ObjectServer manually.

Example 5-8 Starting up Netcool/OMNIbus ObjectServer manually

cd $OMNIHOME/bin
./nco_objserv -name BARI -propsfile $OMNIHOME/etc/BARI.props &

Example 5-9 shows the processes of an up-and-running ObjectServer with all of
its components. This example especially shows these processes up and running:

� “nco” native event GUI process
� “nco_objserv” ObjectServer process
� “nco_config” process for one administrative login
� “nco_event” process for one up-and-running active event list native GUI

Example 5-9 ps -ef|grep nco

ps -ef|grep nco
 root 311326 520314 0 08:33:12 pts/2 0:00
/opt/netcool/omnibus/platform/aix5/bin/nco

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 179

 root 323654 503886 1 12:07:15 pts/4 2:43
/opt/netcool/omnibus/platform/aix5/bin/nco_objserv -name BARI
 root 352382 311326 2 08:33:21 pts/2 0:01
/opt/netcool/omnibus/platform/aix5/bin/nco_event
 root 360592 520314 0 Oct 06 pts/2 8:50
/opt/netcool/platform/aix5/jre_1.5.4/jre/bin/java -classpath
/opt/netcool/omnibus/java/jars/oem_administrator.jar:/opt/netcool/omnibus/java/
jars/ControlTower.jar:/opt/netcool/omnibus/java/jars/hsqldb.jar:/opt/netcool/om
nibus/java/jars/jms.jar:/opt/netcool/omnibus/java/jars/log4j-1.2.8.jar:/opt/net
cool/omnibus/java/jars/jconn2.jar
-Djava.rmi.server.codebase=file:///opt/netcool/omnibus/java/jars/ControlTower.j
ar -Djava.security.policy=file:///opt/netcool/omnibus/etc/admin.policy
-Dnc.home=/opt/netcool -Domni.home=/opt/netcool/omnibus
-Domni.arch.dir=/opt/netcool/omnibus/platform/aix5
-Dtrusted.cert.file=/opt/netcool/platform/aix5/config/trusted.txt -Xms64m
-Xmx512m com.micromuse.centralconfig.LaunchApplication

5.4.7 ObjectServer shutdown

To shut down and stop the ObjectServer manually, on the command line, at any
time, use the following described commands if you do not control the
ObjectServer process automatically with Process Automation.

Example 5-10 shows how to shut down and stop the ObjectServer process.

Example 5-10 nco_sql -server BARI -user root

cd $OMNIHOME/bin
./nco_sql -server BARI -user root
Password:
1> alter system shutdown
2> go
(0 rows affected)
1> quit

Note: To stop the ObjectServer again at any time use the “nco_sql”
command.

Note: Shutting down the ObjectServer does not cause the clients to exit. The
client GUI processes are still shown in the process list on the ObjectServer.

180 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5.5 IBM Tivoli Netcool probe installation overview

As with the ObjectServer, the detailed instructions to install the many different
Netcool/OMNIbus probes available are best referred to via the IBM Information
Center link provided in 5.3, “Netcool/OMNIbus installation” on page 171.

Probes connect to an event source, detect and acquire event data, and forward
the data to the ObjectServer as alerts. Probes use the logic specified in a rules
file to manipulate the event elements before converting them into fields of an
alert in the ObjectServer alerts.status table.

5.5.1 What you need to know about nco_patch

As a Netcool/OMNIbus ObjectServer component, Netcool probes will be installed
as a patch over the “nco_patch” mechanism of Netcool/OMNIbus. This
mechanism requires the Netcool common installer to be used to first install the
Netcool middleware and supporting libraries. This is an equivalent concept to the
Tivoli framework, and is required once on each system that will have a Netcool
component installed on it.

5.5.2 Toggle feature for process control

We recommend selecting and installing just the process control. It provides the
function to configure Netcool-related components (for example, probes and
gateways under Process Automation). Example 5-11 shows how to toggle just
the feature process control.

Example 5-11 Toggle feature process control

Product: Netcool/OMNIbus

Select Feature
------ -------
 [] 1) Desktop - Desktop GUI Applications
 [] 2) Gateways - ObjectServer Gateways

Note: With the latest available versions of Netcool probes, the flex licensing is
no longer required. Probes are installable without any prerequisite Netcool
license server or any required license files.

Note: An Netcool/OMNIbus base installation is a prerequisite for any probe
installation, selecting no options. Just select Process Control if you need to
be able to use process control and remote execution automation.

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 181

 [I] 3) Process Control - Process control and remote execution support.
 [] 4) Servers - ObjectServer and Proxy Server
 [] 5) Confpack - Confpack configuration backup and transfer tool
 [] 6) Administrator - Administrator configuration GUI
 [] 7) AEN Client - Accelerated Event Notification Client
 [] 8) Local Help System - Local On-line Help System. To use Standalone
mode on-line help or start a Infocentre server, this feature must be installed.

Select:
 1-8) Toggle feature
 s) Select all features
 u) Unselect all features
 i) Install selected features
 n) Next page (properties configuration)
 q) Quit
Option [i]: 3

Figure 5-6 show how to select just the feature process control in Installer wizard
mode.

Figure 5-6 Wizard mode: toggle feature for process control

182 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Example 5-12 shows the next step in the text installer for installing just the
process control.

Example 5-12 Feature selection

Product: Netcool/OMNIbus

Select Feature
------ -------
 [] 1) Desktop - Desktop GUI Applications
 [] 2) Gateways - ObjectServer Gateways
 [I] 3) Process Control - Process control and remote execution support.
 [] 4) Servers - ObjectServer and Proxy Server
 [] 5) Confpack - Confpack configuration backup and transfer tool
 [] 6) Administrator - Administrator configuration GUI
 [] 7) AEN Client - Accelerated Event Notification Client
 [] 8) Local Help System - Local On-line Help System. To use Standalone
mode on-line help or start a Infocentre server, this feature must be installed.

Select:
 1-8) Toggle feature
 s) Select all features
 u) Unselect all features
 i) Install selected features
 n) Next page (properties configuration)
 q) Quit
Option [i]: n

5.5.3 Installation of probe for Windows NT event logs

The installation and configuration of this probe is a slightly different process and
is covered in 7.5.1, “Installing and configuring the Windows NT Event Log probe”
on page 323, which also covers other Windows issues and event source
migration.

Note: If you do not want to install just process control, leave all features
unselected here and go forward through the entire installation process. This
way only the base components of Netcool/OMNIbus will be installed.

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 183

5.5.4 Check the probe installation

Example 5-13 shows how to check probe installation and the patch level.

Example 5-13 $OMNIHOME/install/nco_patch -print

cd $OMNIHOME/install
./nco_patch -print

INSTALLED PATCHES

Patch probe-nco-p-glf-5
- -
 Short Description : Netcool/OMNIbus Generic Log File Probe
 Revision : 0
 Requires : probe-compatibility-3.x
 Obsoletes : probe-nco-p-glf probe-nco-p-glf-4
 Installation Date : Wed Oct 3 21:35:37 CEST 2007

Patch probe-nco-p-syslog-4
- -
 Short Description : Syslog probe update
 Revision : 3
 Requires : probe-compatibility-3.x
 Obsoletes : probe-nco-p-syslog probe-nco-p-syslog-1
probe-nco-p-syslog-2 probe-nco-p-syslog-3
 Installation Date : Wed Oct 3 21:49:53 CEST 2007

Patch probe-nco-p-tivoli-eif-2
- -
 Short Description : Netcool/OMNIbus Tivoli EIF probe
 Revision : 1
 Requires : probe-compatibility-3.x probe-nonnative-base-1
 Obsoletes : probe-nco-p-tme10tecad probe-nco-p-tme10tecad-2
probe-nco-p-tme10tecad-3 probe-nco-p-tme10tecad-4 probe-nco-p-tivoli-eif-1
 Installation Date : Wed Oct 3 21:59:11 CEST 2007

Patch probe-nonnative-base-2
- -
 Short Description : Nonnative probe server
 Revision : 1
 Requires : probe-compatibility-3.x
 Obsoletes : probe-nco-p-nonnative probe-nco-p-nonnative-1
probe-nco-p-nonnative-2 probe-nco-p-nonnative-3 probe-nco-p-nonnative-4
probe-nco-p-nonnative-5 probe-nco-p-nonnative-6 probe-nco-p-nonnative-java-2
probe-nco-p-nonnative-java-1 probe-nco-p-nonnative-java
probe-nco-p-nonnative-scripts probe-nonnative-base-0 probe-nonnative-base-1
 Installation Date : Wed Oct 3 21:54:20 CEST 2007

184 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5.5.5 Netcool probe configuration

To configure the Netcool probes it is necessary to edit the properties file of each
probe. The default values are stored in the first section of the properties file.
Append your own settings at the prepared section “Add your settings here” at the
bottom of the file. It is also possible to start the probes by specifying required
parameters at startup, without any stored configuration in a properties file.

At a minimum, the name of the ObjectServer needs to be configured (field name
'Server') if there is no default ObjectServer name NCOMS used. You can see all
parameters available for a certain probe by using the -help function of the probe.

Example 5-14 shows sample configuration options that we appended to the
properties file for the EIF probe, nco_p_tivoli_eif.

Example 5-14 $OMNIHOME/probes/aix5/nco_p_tivoli_eif -help

MessageLevel : 'debug'
Server : 'BARI'
RawCapture : 1
Inactivity : 0 - specific to EIF probe , highly recommended for reliable
connectivity (rather than the default of 600)

5.6 Installing Netcool Security Manager and Netcool
Webtop

Optionally, you can now also install Netcool Security Manager and Netcool
Webtop, referring to the details provided in the online documentation:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=
/com.ibm.netcool_OMNIbus.doc_7.2.0/welcome.htm

Installation check
To check the installation packages in detail run the following command:

$NCHOME/install/ncpkg -query -audit

The output from this command will show the installed components and revision
levels.

 Chapter 5. Upgrading to an IBM Tivoli Netcool environment 185

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.2.0/welcome.htm

186 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 6. Event processing

This chapter describes typical event-processing scenarios and discusses their
implementation in both the TEC and the OMNIbus environments. The following
scenarios are covered:

� Handling duplicate events
� Filtering out events with specific content
� Actions for too many events in a defined time frame
� Filling an attribute dependent on another field’s content
� Handling of cause, effect, and clearing events
� Propagating status change from cause to effect events
� Local and remote script execution
� Escalation of event severity
� Forwarding of events

We also discuss:

� Lookup files
� Extended attributes
� TEC class hierarchy support
� TEC Information button/ URL translation

6

© Copyright IBM Corp. 2008. All rights reserved. 187

6.1 Differences between TEC and OMNIbus

Before we illustrate the migration of TEC rules to OMNIbus automation, we must
clarify the following topics.

6.1.1 Resolving of events

First of all, there are differences in the way TEC and OMNIbus handle events.
The main difference is in the way that events are resolved.

TEC resolves events by closing them. Closed events can then be further
processed by the TEC maintenance tasks Clear_Closed_Events and
Clear_Reception_Log, which delete old closed events from the event repository
and the reception log.

The OMNIbus philosophy for resolving events is to change the severity to clear.
The terminology used is the event is cleared. After clearing, the standard
maintenance trigger generic_clears deletes the events from the database.

6.1.2 Processing of events

Another important difference is the way events are processed. In TEC, the event
arrives and is processed by the rules engine. The rule flow within the rulebase
can be described as procedural processing.

Event processing in OMNIbus is completely different, because OMNIbus is
based on Structured Query Language (SQL) that, as an example of Data
Manipulation Language (DML), is non-procedural.

188 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

6.2 Event processing migration

Event processing migration is the main part of the upgrade process. The current
TEC rulebase will need to be analyzed and then evaluated against the OMNIbus
implementation methods and tools as described Chapter 3, “TEC environmental
assessment and planning guidelines” on page 103, and 3.1, “End-to-end event
flow” on page 104. In general, we recommend that you follow a two-step process,
as follows:

1. Look at the TEC rules in the current rulebase, and analyze and document the
common event processing task.

2. Transform this specification to the OMNIbus environment, create a definition,
and deploy it.

Starting with 6.2.3, “Handling of duplicate events” on page 194, we provide
details for selected migration scenarios, using the following analytical sequence:

� Common description of event processing task
� TEC implementation
� SCE implementation
� OMNIbus implementation

 Chapter 6. Event processing 189

In Figure 6-1 we present a comparative overview of the keywords used in TEC
and the OMNIbus implementations. You can see that some logic from the TEC
rules has moved to the probe rules, because OMNIbus has more capabilities in
that area.

Figure 6-1 Rule processing comparison

Before we go into more detail let us consider some general suggestions.

6.2.1 General suggestions

Here are some general suggestions for Netcool OMNIbus event management:

� Try to handle your event management as close to the event source as
possible.

� Use probe lookup files for event enrichment.

� Enrich the OMNIbus database schema only for the most commonly used
attributes.

� Use the field ExtendedAttr in conjunction with the nvp_* functions to integrate
specific TEC class attributes into one OMNIbus field.

TE
C

O
m

ni
bu

s
link_effect_to_cause

first_instance

generic_clears

Type = 1 – problem
Type = 2 – resolution

Correlation

Correlation

Duplicate Events

Duplicate Events

dup_detect = yes
first_duplicate

set Identifier

deduplication

Filter Out
where [msg_index: equals 7]

drop_received_event

Filter Out
DB trigger: after insertion

delete where msg_index = 7

exec_program(_ev, ’rm.sh’, ..)

Execute ScriptEscalate
set_timer(..’level1'..)

timer_info: equals ’level1’

define proc01 = /tmp/rm.sh
execute proc01(p1, p2, …)

Execute ScriptEscalate
every 15 seconds
SQL statements

server level

probe level

190 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� Pay attention to the field Identifier, which is used by the deduplication
automation, when you transform the dup_detect attributes from the TEC
classes to the ObjectServer database schema.

� Keep the generic_clears automation in mind when you migrate the TEC class
attributes.

Let us look at the typical event management scenarios, starting with handling of
duplicate events. Each one of the following chapters has a common description
of the required event management and discusses the implementations in TEC,
SCE (where possible), and OMNIbus. We assume that OMNIbus 7.2 is installed.

6.2.2 Lab environment

In this section we discuss the lab environment.

TEC
For the creation of events we use either the TEC logfile adapter with a configured
LogSources environment entry or the wpostemsg command. The LogSources
entry points to the file /tmp/applications, whose content is now listed in
Figure 6-2.

Figure 6-2 Application log file example /tmp/applications

date time hostname applicationname errortype message
2007-09-27 09:01:02 host01 appl01 WARNING message01
2007-09-27 09:01:03 host01 appl01 MINOR message01
2007-09-27 09:01:04 host01 appl01 ERROR message01

 Chapter 6. Event processing 191

This application log file will be parsed with the format statements shown in
Figure 6-3, which are used in the distribution section of a corresponding ACP
profile.

Figure 6-3 Format file application.fmt

In addition to the TEC_Notice class, we use our own class file ups.baroc, which
represents events coming from the monitoring of an uninterruptible power supply
(UPS).

FORMAT TEC_Notice
%s %s %s %s ERROR %s
date $1
sub_origin $2
hostname $3
sub_source $4
severity CRITICAL
msg $5
END

FORMAT TEC_Notice
%s %s %s %s MINOR %s
date $1
sub_origin $2
hostname $3
sub_source $4
severity MINOR
msg $5
END

FORMAT TEC_Notice
%s %s %s %s WARNING %s
date $1
sub_origin $2
hostname $3
sub_source $4
severity WARNING
msg $5
END

192 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

We assume that the reader is familiar with the configuration and distribution of
ACP profiles, so we do not explain this in detail.

Figure 6-4 BAROC class file ups.baroc

#--#
UPS.BAROC
#--#
TEC_CLASS :
 UPS ISA EVENT
 DEFINES
 {
 source: default=SNMP;
 };
END

TEC_CLASS :
 UPS_Fan_Down ISA UPS
 DEFINES
 {
 severity: default=WARNING;
 hostname: dup_detect=yes;
 };
END

TEC_CLASS :
 UPS_Temp_Degraded ISA UPS
 DEFINES
 {
 severity: default=WARNING;
 hostname: dup_detect=yes;
 };
END

TEC_CLASS :
 UPS_Fan_Up ISA UPS
 DEFINES
 {
 severity: default=HARMLESS;
 };
END

 Chapter 6. Event processing 193

The classes UPS_Fan_Down and UPS_Temp_Degraded have the facet
dup_detect turned on so that the slot host name in theses classes can be used to
detect duplicate events.

SCE
Rules for the SCE are sent to the endpoint of a TEC gateway with the distribution
of a tec_gateway_sce ACP profile. In this profile you must configure the
configuration parameters:

UseStateCorrelation=YES
StateCorrelationConfigURL=file:$TIVOLIHOME/tec/tecroot.xml

Also, adjust the distribution location of the tecroot.xml file.

OMNIbus
In OMNIbus we are using the same application log file that we used with the
TEC, but this time in conjunction with the generic logfile probe (glf). In addition,
we use the nco_sql command to send events manually to the ObjectServer.

The configuration files we used are located in the directory
/opt/netcool/omnibus/probes/linux2x86 and are named glf.props and glf.rules.
They are discussed later in detail. To start the glf probe you can use nco_p_glf
from the directory /opt/netcool/omnibus/probes. To stop the probe you can kill
the process.

In the following scenarios you will find various configurations of the generic logfile
probe rules that process our logfile.

6.2.3 Handling of duplicate events

In this section we discuss the handling of duplicate events.

Common description of the scenario
Here duplicate events are sent repeatedly from an event source. Only a single
event containing the newest event information should be seen on the event
console.

TEC implementation
A BAROC class with the dup_detect modifier for specific slots must be defined
first. Below are two possible solutions:

� Create a specific rule for this event class or a generic rule for all event
classes. Define a reception action that updates the older event with current

194 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

information from the new duplicate event, and then drops the newly arrived
event.

� Create a specific rule for this event class or a generic rule for all event
classes. Define a reception action that closes the older duplicate event and
leaves the newly arrived event untouched.

First solution
In Figure 6-5 we developed the following rule.

Figure 6-5 TEC rule file lab.rls for duplicate event processing

For testing purposes we use the following commands:

wpostemsg -m test1a hostname=mondorf UPS_Fan_Down TEC
wpostemsg -m test1b hostname=mondorf UPS_Fan_Down TEC

After this we can see the result in the TEC console in Figure 6-6.

Figure 6-6 TEC console with duplicated event

rule: filter_duplicate_ups:
 (
 description: 'Filter duplicates for UPS events',
 event:_event of_class 'UPS'
 where [msg: _new_msg],
 action: filter:
 (
 first_duplicate(_event, event: _dup_ev
 where
 [
 status: outside ['CLOSED']
],
 _event - 600 - 600
),
 add_to_repeat_count(_dup_ev, 1),
 set_event_message(_dup_ev, '%s', [_new_msg]),
 drop_received_event
)
).

 Chapter 6. Event processing 195

Second solution
This solution is not illustrated here because it does not offer any additional
information.

Implementation with the SCE
Define a duplicate rule with an appropriate time interval.

Solution
In Figure 6-7 you can see a possible solution for our issue.

Figure 6-7 SCE duplicate XML rule

In this example the first event is forwarded and the following events are
discarded until the time frame is reached. Then the counting will start again.

We tested this rule with the same events with which we tested the TEC rule. The
difference in this test is that we use the event flow through the SCE. You do this
on the TEC server by activating the LCF environment with lcf_env.sh and by
using the endpoint wpostemsg command, which is located in $LCF_BINDIR/../bin.

OMNIbus implementation
The standard deduplication should be used.

Solution
We created the following SQL statement and executed it with nco_sql three
times:

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values

 <rule id="itso.rule01">
<eventType>UPS_Fan_Down</eventType>
<duplicate timeInterval="15000">

<predicate>
<![CDATA[

true
]]>

</predicate>
</duplicate>
<triggerActions>

<action function="TECSummary" singleInstance="false"/>
</triggerActions>

 </rule>

196 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

('itso-corr-01', 'Fan down on UPS ups_atl', 'mondorf', 'Agent', 1, 2,
'UPS', 'SNMP', 'nco_sql', getdate());

The result of the execution is shown in Figure 6-8.

Figure 6-8 OMNIbus event list for duplicate events

The processing for duplicate events is done by the default deduplication
database trigger, which is listed in Figure 6-9.

Figure 6-9 Standard OMNIbus deduplication database trigger

This trigger fires when an event with the same identifier content is to be
reinserted. This automation updates several attributes of the existing event,
either with information from the new event or with system information.

6.2.4 Filtering out events with specific content

In this section we discuss filtering out events with specific content.

Common description of the scenario
An event coming from server mondorf should be shown on the console, except
when the msg is equal to “filter-out”.

begin
 set old.Tally = old.Tally + 1;
 set old.LastOccurrence = new.LastOccurrence;
 set old.StateChange = getdate();
 set old.InternalLast = getdate();
 set old.Summary = new.Summary;
 set old.AlertKey = new.AlertKey;
 if ((old.Severity = 0) and (new.Severity > 0))
 then
 set old.Severity = new.Severity;
 end if;
end;

 Chapter 6. Event processing 197

TEC implementation
Two different solutions are possible:

� Create a filter for the logfile adapter. Define the appropriate class and
compare the source for the msg field to “filter-out”.

� Create a specific rule for this event source. Define a reception action that
compares the host name to mondorf and the msg to “filter-out”. If both are
true, then the incoming event is dropped.

First solution
Only a filter has to be defined in the ACP profile and distributed to the server
named mondorf. See Figure 6-10.

Figure 6-10 tecad_logfile.conf - filter statement

Second solution
Figure 6-11 shows the solution for this event management.

Figure 6-11 TEC rule for filtering out special events

The test was done with the following wpostemsg command:

wpostemsg -m filter-out hostname=mondorf UPS_Fan_Down TEC

Because the event does not arrive at the event console, we cannot provide a
meaningful graphic here.

Filter:Class=TEC_Notice;msg=filter-out;

rule: filter_out:
 (
 description: 'Filter special event out',
 event:_event of_class 'UPS'
 where
 [
 hostname: equals 'mondorf',
 msg: equals 'filter-out'
],
 reception_action: filter:
 (
 drop_received_event
)
).

198 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Implementation with the SCE
Define a match rule with an appropriate comparison to the content of the host
name and msg.

Solution
To filter out specific events at the SCE we provide Figure 6-12.

Figure 6-12 SCE rule for filtering specific events

Here all events from the TEC Class UPS_Temp_Degraded that have “mondorf”
in the host name and “filter-out” in the msg slot are discarded.

OMNIbus implementation
To implement OMNIbus:

1. Create a rules file for the probe. Compare the host name to “mondorf” and the
msg field to “filter-out”. If it is true, then discard the event.

2. Create a database trigger that cancels the event insertion if the msg attribute
is equal to "filter2b" and if the host name is equal to "mondorf".

3. If you want to document all events in a reporting database and that
non-wanted events will automatically deleted after they have arrived, fill the
field ExpireTime at the probe level for the unwanted ones. These events will
automatically be cleared after the defined time frame with the standard expire
automation. To prevent the event from being deleted before the gateway has
stored it in the reporting database, modify the expire automation. First mark
the event in the gateway AFTER IDUC command that the gateway has stored

<rule id="itso.rule02">
 <eventType>UPS_Temp_Degraded</eventType>
 <match>
 <predicate>
 <![CDATA[
 &hostname == "mondorf" &&
 &msg == "filter-out"
]]>
 </predicate>
 </match>
 <triggerActions>
 <action function="Discard" singleInstance="true"/>
 </triggerActions>
</rule>

 Chapter 6. Event processing 199

the event and then delete only those events in the expire automation that has
been marked.

4. In the case that the event should go to a log file, write an audit log at the
ObjectServer and cancel the event insertion.

First solution
Create a rules file for the probe. Compare the host name to “mondorf” and the
msg field to “filter-out”. If it is true, then discard the event.

This solution concerns the glf.props and the glf.rules files. Both files are
responsible for controlling the behavior of the probe. Let us look at the props file
(Figure 6-13).

Figure 6-13 Used configuration of the generic logfile probe - glf.props

Server : "WEIMAR"
LogFileName : "/tmp/applications"

200 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Here we listed only the name of the ObjectServer and the location of the logfile
that should be observed. All other standard fields we left untouched. The more
interesting file is glf.rules, where the rules of the probe are located. We did not
modify the standard section. Our modifications are shown in Figure 6-14.

Figure 6-14 Probe rule - glf.rules

In the upper part we define how the fields of the ObjectServer should be filled
with constants or with the parsed input fields of the observed logfile. The content
of field four controls the setting of the severity (5 - critical, 4 - major, or 3 - minor).

@AlertGroup = "applications"
@Agent = "logfile"
@Node = $FieldVal03
@NodeAlias = "itso"
@Manager = "glf"
@Summary = $Details
@Type = 9
@Identifier = @Manager + @AlertGroup + $FieldVal02
#
defining the Type and Severity
#
if(match($FieldVal04, "appl01"))
 {
 switch($FieldVal05)
 {
 case "ERROR" : @Severity = 5
 @Type = 1
 case "MINOR" : @Severity = 4
 @Type = 1
 case "WARNING": @Severity = 3
 @Type = 2
 default: @Severity = 1
 @Type = 2
 }
 }
#
Filter out special events
#
if(match($FieldVal06, "filter-out") and match($FieldVal03,
"mondorf"))
{
discard
}

 Chapter 6. Event processing 201

The content of the five field sets the event type (1 - problem or 2 - resolution).
The last part checks, depending on the content of six field, whether the event
should be discarded. To test this behavior, we append the next line to
/tmp/applications:

2006-12-10 17:01:14 mondorf appl01 ERROR filter-out

The probe processed this event and discarded it.

Second solution
Create a database trigger that deletes the event after insertion if the msg
attribute is equal to “filter-out” and if the host name is equal to “mondorf”.

This solution is located at the ObjectServer. Here we had to create a new
database trigger with the following settings:

� Priority = 1

� Pre database action

� Apply to row

� Fire on insert

� Action:

if (new.Node = ‘mondorf’ and new.Location = ‘filter2b’) then cancel;
endif;

To execute this SQL statement, we had to extend the file glf.rules with the
assignment of $FieldVal06 to Location if the content of $FieldVal06 is equal to
filter2b. Figure 6-15 shows the appropriate part of the rules file.

Figure 6-15 Code extract filter2b from glf.rules

if(match($FieldVal06, "filter2b"))
{
@Location = $FieldVal06
}

202 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

To test this part of the probe rule and the ObjectServer automation described
above we appended the three lines shown in Figure 6-16 to the file
/tmp/applications.

Figure 6-16 Application logfile lines for the automation itso_filter2b

After this we see the event view shown in Figure 6-17.

Figure 6-17 Result of the filter automation

Here we can see that the event with the time stamp 11:01:17 did not show up at
the event console.

Third solution
If you want to document all events in a reporting database and have non-wanted
events automatically deleted after they have arrived, fill the ExpireTime field at
the probe level for the unwanted ones. These events will automatically be
cleared after the defined time frame with the standard expire automation. To
prevent the event from being deleted before the gateway has stored it in the
reporting database, modify the expire automation. First mark the event in the
gateway AFTER IDUC command in which the gateway has stored the event and
then delete only those events in the expire automation that have been marked.

For this solution we extend our glf.rules file such that we insert a condition based
on the six field of our application log file. If this contains filter-expire, then the
Expire field of the event should be filled with 30. Figure 6-18 shows this part of
code.

Figure 6-18 Code extract expire from glf.rules

2007-09-28 11:01:16 mondorf appl01 MINOR filter-in
2007-09-28 11:01:17 mondorf appl01 MINOR filter2b
2007-09-28 11:01:18 mondorf appl01 MINOR filter-in

if(match($FieldVal06, "filter-expire"))
{
@ExpireTime = 30
}

 Chapter 6. Event processing 203

Every minute the ObjectServer runs the expire automation, which updates the
severity of the event if the lifetime of the events has expired. You can see this
function in Figure 6-19. The function getdate() gets the actual system time.

Figure 6-19 Standard automation expire

This function has an evaluation statement that looks like Figure 6-20.

Figure 6-20 Selection statement for the expire trigger

To test this, we appended the following line in our applications file:

2007-09-28 13:01:18 mondorf appl01 MINOR filter-expire

The results can be seen on the event console, as shown in Figure 6-21.

Figure 6-21 Result of the expire event

To simulate the gateway functionality we provide an additional menu with the tool
contents shown in Example 6-1.

Example 6-1 Tool contents of additional menu to simulate gateway

update alerts.status set Location = 'marked' where Serial in (
$selected_rows.Serial);flush iduc;

After 60 seconds the severity of this event changes to 0 - clear (color green).

Fourth solution
In the case that the event should go to a log file, write an audit log at the
ObjectServer and cancel the event insertion.

for each row expire in expires
begin
update alerts.status via expire.Identifier set Severity = 0 where
LastOccurrence < (getdate() - expire.ExpireTime) and Location =
'marked';
end;

select Identifier, ExpireTime from alerts.status where ExpireTime >
0 and Severity > 0

204 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

This is similar to the second solution. We only had to add the instructions to write
to a predefined logfile. This logfile is defined in Figure 6-22.

Figure 6-22 Definition of a ObjectServer logfile

After this definition is entered the ObjectServer has to be recycled. Now we can
use the logfile in our new automation, shown in Figure 6-23.

Figure 6-23 ObjectServer automation itso_filter2d

if ((new.Node ='mondorf') AND (new.Location = 'filter2d'))
THEN write into itso_audit2d values ('audit-content=', new.Summary);
cancel;
end if;

 Chapter 6. Event processing 205

To store the word filter2d in the Location field we had to extend the glf.rules file
as shown in Figure 6-24.

Figure 6-24 Code extract of glf.rules

To test the extended glf.rules file and the automation itso_filter2d we appended
the following line to our application logfile /tmp/applications:

2007-09-28 15:01:17 mondorf appl01 MINOR filter2d

We do not see any additional event in the event console because the incoming
event is deleted after it is stored in the file /tmp/audit2d1. This file contains the
line:

audit-content= 2007-09-28 15:01:17 mondorf appl01 MINOR filter2d

Now we have considered all four solutions for filtering out events with a specific
content.

6.2.5 Actions for too many events in a defined time frame

In this section we discuss actions for too many events in a defined time frame.

Common description of the scenario
If one event type arrives five times in 3 minutes, then raise the severity to critical.

TEC implementation
Create a specific rule for this event class. A reception action, triggered by the
new duplicate event, searches for an older duplicate event and examines its
arrival time and repeat count. If the older event is still newer than 3 minutes and
the repeat count is 3 (because there were already an original event plus 3
duplicates), then set the severity of the older event to critical and increase its
repeat_count by one. Drop the new duplicate event.

If the repeat_count of the older event is not 3, then add one to repeat_count.
Drop the new duplicate event.

If the older event is older than 3 minutes, then close the older event and leave
the new event untouched.

if(match($FieldVal06, "filter2b") OR match($FieldVal06, "filter2d"))
{
@Location = $FieldVal06
}

206 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Solution
Here we find the solution shown in Figure 6-25 using a TEC rule.

Figure 6-25 TEC rule for too many events in a defined time frame

This rule is very similar to the one in the duplicate section. The main differences
are the two lines containing the word repeat_count and the line that raises the
event severity. To be sure that this rule will work properly in the content of the
entire rulebase, we must replace the old duplication rule in the rulebase with this
new one.

The first repeat_count line stores the repeat_count in the variable _rc, and the
second line compares the content of this variable to 3. Only if this comparison is
true will the rest of the rule (here the raising of the event’s severity) be executed.
If it fails, the rule will terminate.

To test this rule we send the following wpostemsg commands:

wpostemsg -m event#1 hostname=mondorf UPS_Fan_Down TEC
wpostemsg -m event#2 hostname=mondorf UPS_Fan_Down TEC
wpostemsg -m event#3 hostname=mondorf UPS_Fan_Down TEC
wpostemsg -m event#4 hostname=mondorf UPS_Fan_Down TEC
wpostemsg -m event#5 hostname=mondorf UPS_Fan_Down TEC

rule: dup_escalate_5_in_3_minutes:
 (
 event: _event of_class within ['UPS'],
 reception_action:
 (
 first_duplicate(_event,
 event: _dup_event
 where [
 status: outside ['CLOSED'],
 repeat_count: _rc
],
 _event - 180 - 0),
 add_to_repeat_count(_dup_event, 1),
 drop_received_event,
 _rc == 3,
 set_event_severity(_dup_event,'CRITICAL')
)
).

 Chapter 6. Event processing 207

After the last event arrives, the severity is set to critical, as you can see in
Figure 6-26.

Figure 6-26 TEC console for too many events in a defined time frame

Implementation with the SCE
Define a threshold rule with an appropriate time interval.

Solution
Here we developed a SCE rule that fires against the TEC class
UPS_Temp_Degraded, collects all events in the defined time frame, and at the
end of the time frame sends an event with the filled attribute repeat_count.

Figure 6-27 SCE threshold XML rule

We tested this rule with the wpostemsg of the endpoint as in the filtering section.
The TEC event console looks similar to Figure 6-26 except for the TEC class
name.

OMNIbus implementation
Use the function’s updateload and geteventcount at the probe level to develop a
standard X in Y solution.

<rule id="itso.rule03">
 <eventType>UPS_Temp_Degraded</eventType>
 <threshold thresholdCount="5" timeInterval="180000"
triggerMode="allEvents">
 <predicate>
 <![CDATA[true]]>
 </predicate>
 </threshold>
 <triggerActions>
 <action function="TECSummary" singleInstance="false"/>
 </triggerActions>
</rule>

208 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Solution
In this solution we use an array to solve this requirement. Let us look at the
developed code before we explain it.

Figure 6-28 Probe X in Y solution with updateload and geteventcount

The first six lines define the sliding time window and the maximum of events. For
a detailed description see 6.3.1, “Measuring load and numbers of events in a
time frame” on page 242.

The updateload line refreshes the counting and the eventcount extracts the
account number. If the number of events is greater than three, the Summary field
is updated.

We tested this function by appending five lines to our application log file.

On the OMNIbus event console the result looks like Figure 6-29.

Figure 6-29 OMNIbus event list for X in Y solution

6.2.6 Filling an attribute dependent on another field’s content

In this section we discuss filling an attribute dependent on another field’s content.

Common description of the scenario
Based on the naming conventions of servers, the field sub_source/Location is
filled with the operating system name.

%time_window = 60
%event_buffer_size = 5
if(match(loads[@Node], ""))
 {
 loads[@Node] = %time_window + "." + %event_buffer_size
 }
loads[@Node] = updateload(loads[@Node])
%myeventcount = geteventcount(loads[@Node])
if (int(%myeventcount) >= 3)
 {
 @Summary = @Summary + ": Occurred " + %myeventcount + " times in "
+ %time_window + " seconds"
 }

 Chapter 6. Event processing 209

TEC implementation
A generic rule is triggered by all arriving events. In a reception action, the host
name is parsed to find the portion that provides a key to the operating system (for
example, S12345678 is a Windows system). Based on that key, the field
sub_source is filled with the value “Windows”.

Solution
To develop a simple rule without extending our BAROC classes, we fill the field
sub_source with the string “Windows” if the first letter of the host name is “M” (for
the Mondorf machine) or we fill it with “Linux” if the first letter is “S” (for the
machine Salvador). In Figure 6-30 you can find the corresponding rules code.

Figure 6-30 TEC rule - filling fields

For testing this rule we used the following wpostemsg commands:

wpostemsg -m test-4 hostname=Mondorf UPS_Temp_Degraded TEC
wpostemsg -m test-4 hostname=Salvador UPS_Temp_Degraded TEC

rule: parse_hostname_set_sub_source:
 (
 event: _event of_class _class
 where [
 hostname: _hostname outside ['']

],
 reception_action:
 (
 atompart(_hostname,_hostbegin,1,1),
 (
 _hostbegin == 'M'->
 bo_set_slotval(_event,sub_source,'Linux');
 (
 _hostbegin == 'S' ->
 bo_set_slotval(_event,sub_source,'Windows')
)
)
)
).

210 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In the event console we can see the result of our rule.

Figure 6-31 TEC console - filled fields

OMNIbus implementation
To implement:

1. Use lookup tables at the probe level to resolve this issue.

2. Use the extended attributes if you do not want to extend the database
schema of the ObjectServer.

First solution: lookup tables
Here we use lookup tables at the probe level to resolve this issue.

Lookup tables can be defined either inline or externally in flat files. In Figure 6-32
you can see both types.

Figure 6-32 Probe rule - lookup tables

Here the lookup table consists of two lines and two columns. Each line defines a
machine name and the corresponding operating system. The two items are
separated with a tab. To access this table you use the lookup keyword. The first
parameter of this function contains the search argument and the second the
table name. If the search is successful the result is placed as an assignment to
the left variable. The referenced file looks like Figure 6-33.

Figure 6-33 Probe rule - lookup table file /tmp/machine.txt

Note that there are tabs between the machine name and the operating system
type.

table machine_table = {{"Mondorf", "Linux"},
 {"Salvador", "Windows"}}
table machine_txt = "/tmp/machine.txt"
...
@Agent=lookup(@Node,machine_table)
@Manager=lookup(@Node,machine_txt)

Mondorf LINUX
Salvador WINDOWS

 Chapter 6. Event processing 211

Another way of implementing this request is the use of regular expressions.
These are shown in Figure 6-34.

Figure 6-34 Probe rule - use of regular expressions

To test all these rules types, we appended the two lines shown in Figure 6-35 to
our /tmp/applications file.

Figure 6-35 Logfile - /tmp/applications

In Figure 6-36 we see the OMNIbus event list.

Figure 6-36 OMNIbus event console with lookup table results

Note: To improve the look of the events in the EventList, customers often use
lookup tables, putting the machine host name into the field NodeAlias
depending on the IP address in the Node field. A common way to achieve this
is to use a recently refreshed copy of the file /etc/hosts.

Alternatively, you can fill the NodeAlias field dynamically with a DNS lookup,
but be sure that this is very fast and reliable, or probe performance will suffer
dramatically.

if (regmatch(@Node,"^Mondorf"))
 {@AlertGroup = "L i n u x"
 }
if (regmatch(@Node,"^Salvador"))
 {@AlertGroup = "W i n d o w s"
 }

2007-10-01 15:01:03 Mondorf appl01 MINOR test-4
2007-10-01 15:02:03 Salvador appl01 MINOR test-4

Note: Remember that we have reused existing ObjectServer fields in this
example. That is not standard. You have to consider whether you want to
extend the OMNIbus database schema or use extended attributes.

212 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Second solution: extended attributes
Use the extended attributes if you do not want to extend the database schema of
the ObjectServer.

This solution makes use of the extended attributes, which are new since
OMNIbus 7.2. The database schema of OMNIbus 7.2 was extended by the field
ExtendedAttr, which is a varchar field of 4,096 bytes. It was added to contain
name-value pairs for TEC attributes names and TEC attribute contents. In
addition to this field itself, there are corresponding functions to access the field:

nvp_add This function is used at the probe level to concentrate
different probe fields to the ExtendedAttr field. The first
parameter of this function defines the name of the
container to which the variable-value pair is transported
before it is assigned to the left side of the function. Then
the variable-value pairs follow. Here is an example:
"@ExtendedAttr=nvp_add(@ExtendedAttr, 'HostName',
'Mondorf', 'HostType', 'Linux')". 'Mondorf' is the first
variable name and 'Linux' is the first value content.

nvp_remove At the probe level nvp_remove removes keys from a
previously defined list. We did not tested this function.

nvp_exists At the ObjectServer level this functions checks whether a
variable-value pair exists in the ObjectServer field
ExtendedAttr. Therefore, we provide the example: If (
nvp_exists(new.ExtendedAttr, 'HostName') = TRUE)
THEN update alerts.status via new.Identifier set Location
= nvp_get(new.ExtendedAttr, 'HostName'); end if;.

nvp_get With nvp_get you can extract the value content from a
name-value pair. For example, “set Location =
nvp_get(new.ExtendedAttr, 'Mondorf')”. Here the
ObjectServer field Location is filled with the value that is
referenced by the value name ‘Mondorf’.

nvp_set The nvp_set command adds or replaces keys from a
name-value pair. We did not test this function.

 Chapter 6. Event processing 213

In our environment we established the commands at the probe level and at the
ObjectServer level. Figure 6-37 shows the probe level.

Figure 6-37 Extended attributes at probe level in glf.rules

Instead of using strings in the nvp_add command as shown in the definition of
the nvp-functions above, we used the command the normal way with probe
variables. Therefore, we defined temporary fields and filled them with strings.

To create events, we used our normal approach and extended our logfile with the
following line:

2007-10-02 16:45:25 Mondorf appl01 MINOR test-9

This results in the OMNIbus events list, as shown in Figure 6-38.

Figure 6-38 OMNIbus eventlist for extended attributes

The content of the extended attributes is shown in Figure 6-39.

Figure 6-39 Event content of extended attributes

$f1-descr ="Mondorf"
$f1-content ="Linux"
@ExtendedAttr = nvp_add(@ExtendedAttr, "HostName", $f1-descr,
"HostType", $f1-content)

214 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The Location field of the event is automatically filled as a result of the following
automation (Figure 6-40), which uses the new extended attribute commands in a
database insertion trigger.

Figure 6-40 Database trigger for extended attributes

After testing this automation, the Location field has the content shown in
Figure 6-41.

Figure 6-41 Location field after test

6.2.7 Handling of cause, effect, and clearing events

In this section we discuss the handling of cause, effect, and clearing events.

Common description of the scenario
At the source, the following events are raised:

� Cause event
� Effect event
� Clearing event

The operator should see only the cause event and no effect event. After the
clearing event arrives, the cause event should no longer be shown on the event
console.

TEC implementation
Create specific rules for these event classes. Link the effect events to the cause
event at arrival, and propagate the status from the UPS_Fan_Down event to the

if (nvp_exists(new.ExtendedAttr, 'HostName') = TRUE)
 THEN
 update alerts.status via new.Identifier
 set Location = nvp_get(new.ExtendedAttr, 'HostName');
end if;
if (nvp_exists(new.ExtendedAttr, 'HostType') = TRUE)
 THEN
 update alerts.status via new.Identifier
 set Location = Location + ' - ' + nvp_get(new.ExtendedAttr,
'HostType');
end if;

 Chapter 6. Event processing 215

UPS_Temp_Degraded event. Close the cause event when the clearing event
arrives and discard the clearing event.

216 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Solution
Typically, TEC rules event processing is based on special BAROC classes in
which cause, effect, and clearing events are defined. For these events we find a
corresponding rule set. In this rule set there are rules that use the
link_effect_to_cause predicate to link two event instances together, so that when
the clearing event arrives, another rule can search for the linked events with the
all_instances or first_instance predicate. Figure 6-42 shows us these files.

Figure 6-42 BAROC class ups.baroc

#--#
UPS.BAROC
#--#
TEC_CLASS :
 UPS ISA EVENT
 DEFINES
 {
 source: default=SNMP;
 };
END

TEC_CLASS :
 UPS_Fan_Down ISA UPS
 DEFINES
 {
 severity: default=WARNING;
 hostname: dup_detect=yes;
 };
END

TEC_CLASS :
 UPS_Temp_Degraded ISA UPS
 DEFINES
 {
 severity: default=WARNING;
 hostname: dup_detect=yes;
 };
END

TEC_CLASS :
 UPS_Fan_Up ISA UPS
 DEFINES
 {
 severity: default=HARMLESS;
 };
END

 Chapter 6. Event processing 217

Here the definition of the TEC class UPS again. It is a child of the base class
EVENT. This class has three child classes: UPS_Fan_Down (cause event),
UPS_Temp_Degraded (effect event), and the clearing event UPS_Fan_Up.

Figure 6-43 TEC rule link_temp_to_fan

Here we find the linking between the cause and the effect event. They are not
just linked, but the status of the UPS_Fan_Down event is propagated to the
newly arrived UPS_Temp_Degraded event, so after this rule processing both
have the same status.

rule: link_temp_to_fan:
 (
 description: 'Link the UPS_Temp_Degraded events to the
UPS_Fan_Down events',

 event: _event of_class 'UPS_Temp_Degraded'
 where [
 status: _status outside ['CLOSED'],
 hostname: _hostname
],

 action: link_to_fan_down :
 (
 first_instance(event: _fan_down_ev of_class 'UPS_Fan_Down'
 where [
 status: _status_fan_down outside ['CLOSED'],
 hostname: equals _hostname
]
),
 link_effect_to_cause(_event, _fan_down_ev),
 set_event_status(_event, _status_fan_down)
)
).

218 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Later on when the clearing event arrives, the rule in Figure 6-44 will be fired.

Figure 6-44 TEC rule auto_close_when_fan_up

rule: auto_close_when_fan_up:
 (
 description: 'Automatically close the UPS_Fan_Down event and the
linked \
 UPS_Temp_Degraded when we receive UPS_Fan_Up',
 event: _event of_class 'UPS_Fan_Up'
 where [
 status: _status outside ['CLOSED'],
 hostname: _hostname
],
 reception_action: find_and_close:
 (
 all_instances(event: _ev_fan_down of_class 'UPS_Fan_Down'
 where
 [
 status : outside ['CLOSED'],
 hostname : equals _hostname,
 date_reception : _date,
 event_handle : _ev_handle
]
),
 set_event_status(_ev_fan_down, 'CLOSED'),
 all_instances(event: _ev_temp_degraded of_class
'UPS_Temp_Degraded'
 where
 [
 status : outside ['CLOSED'],
 cause_date_reception : equals _date,
 cause_event_handle : equals _ev_handle
]
),
 set_event_status(_ev_temp_degraded, 'CLOSED')
),
action : drop :
 (
 drop_received_event
)
).

 Chapter 6. Event processing 219

When the UPS_Fan_Up (clearing) event is received, the action find_and_close
looks for all UPS_Fan_Down (cause) events from the same host and searches
for all the corresponding UPS_Temp_Degraded events that are linked to the
cause event. The cause and the effect event will be closed. After this, the arrived
clearing event is dropped.

To test these rules we provided the following events. We sent them with the
tec_agent_demo tool. The tec_agent_demo command is located in the directory
$BINDIR/TME/TEC and is used via $TEC_BIN_DIR/tec_agent_demo -a data
/directory/event-filename. TEC_BIN_DIR must be exported first as
TEC_BIN_DIR=$BINDIR/TME/TEC. The file events-filename only comprises file
names that are located in the same directory. These files contains the real event
content, as shown in Figure 6-45, Figure 6-46, and Figure 6-47.

Figure 6-45 UPS_Fan_Down event

Figure 6-46 UPS_Temp_Degraded event

Figure 6-47 UPS_Fan_Up event

UPS_Fan_Down;
origin='9.36.11.3';
hostname=ups_atl;
msg='Fan down on UPS ups_atl';
adapter_host=nfs_server;

END

UPS_Temp_Degraded;
origin='9.36.11.3';
hostname=ups_atl;
msg='Temperature on UPS ups_atl is too high';
adapter_host=nfs_server;

END

UPS_Fan_Up;
origin='9.36.11.3';
hostname=ups_atl;
msg='Fan on UPS ups_atl is up again';
adapter_host=nfs_server;

END

220 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

After sending the events we have the output on the TEC console shown in
Figure 6-48.

Figure 6-48 TEC console with correlated events

We see that the rule auto_close_when_fan_up closes the cause and effect event
and drops the UPS_Fan_Up event.

OMNIbus implementation
Check whether the event probe sets the event type correctly and use the default
correlation behavior of the generic_clear automation.

First solution
In OMNIbus the type of event (cause, effect, or clearing) is defined in the Type
field at the probe level. The following values are possible:

� 0 - Type not set
� 1 - Problem
� 2 - Resolution
� 3 - Netcool/visionary problem
� 4 - Netcool/visionary resolution
� 7 - Netcool/ISMs new alarm
� 8 - Netcool/ISMs old alarm
� 11 - More severe
� 12 - Less severe
� 13 - Information

The ObjectServer automations provide two standard database triggers for this
task. The first one is the generic_clear temporal trigger, which runs every 5
seconds, and the other is the temporal trigger delete_clears, which runs every
minute. To achieve a better understanding of these triggers, let us take a deeper
look at the OMNIbus attributes that are used in this automation:

Agent The Agent field contains a descriptive name of the
sub-manager that generated the alert (for example,
manager = MTTrapd Probe, agent = IETF-BRIDGE-MIB).

 Chapter 6. Event processing 221

AlertGroup The AlertGroup field contains a descriptive name of the
type of failure indicated by the alarm (for example,
interface status, CPU utilization, and so on).

AlertKey The AlertKey field contains a descriptive key that
indicates the object instance referenced by the alarm (for
example, the disk partition indicated by a file system full
alarm, or the switch port indicated by the utilization
alarm).

LastOccurrence Time in seconds since midnight (GMT), Jan. 1. 1970.
when this alert was last updated at the probe.

Node The Node field is used to identify the managed entity from
which the alarm originated. This could be a host/device
name, service name, customer, or other entity.

Manager The Manager field contains a descriptive name of the
probe that collected and forwarded the alarm to the
ObjectServer (for example, MTTrapd Probe, HP
OpenView NNM, and so on).

Severity The Severity field can indicate any of six defined severity
levels, which provide an indication of how it is perceived
that the capability of the managed object has been
affected.

222 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

With the understanding of the contents of these OMNIbus attributes we can now
have a closer look at the automation. Let us first look at the generic_clear code
(Figure 6-49).

Figure 6-49 OMNIbus standard automation generic_clear

begin
 - 1 - Populate a table with Type 1 events corresponding to any uncleared
Type 2 events
 for each row problem in alerts.status where
 problem.Type = 1 and problem.Severity > 0 and
 (problem.Node + problem.AlertKey + problem.AlertGroup + problem.Manager)
in
 (select Node + AlertKey + AlertGroup + Manager from alerts.status where
Severity > 0 and Type = 2)
 begin
 insert into alerts.problem_events values (problem.Identifier,
problem.LastOccurrence,
 problem.AlertKey, problem.AlertGroup,
 problem.Node, problem.Manager, false);
 end;

 - 2 - For each resolution event, mark the corresponding problem_events
entry as resolved
 -- and clear the resolution
 for each row resolution in alerts.status where resolution.Type = 2 and
resolution.Severity > 0
 begin
 set resolution.Severity = 0;
 update alerts.problem_events set Resolved = true where
 LastOccurrence < resolution.LastOccurrence and
 Manager = resolution.Manager and Node = resolution.Node and
 AlertKey = resolution.AlertKey and AlertGroup = resolution.AlertGroup ;
 end;

 - 3 - Clear the resolved events
 for each row problem in alerts.problem_events where problem.Resolved = true
 begin
 update alerts.status via problem.Identifier set Severity = 0;
 end;

 - 4 - Remove all entries from the problems table
 delete from alerts.problem_events;
end

 Chapter 6. Event processing 223

This automation is divided into four parts:

1. The first part populates the table alerts.problem_events with type 1 events
from the alerts.status table corresponding to any uncleared type 2 events.

2. In the second step, each resolution event in the alerts.status table is in the
second step marked as cleared, and the corresponding entry in
alerts.problem_events is marked as resolved.

3. All the resolved marked events in alerts.problem_events and the
corresponding events in alerts.status are cleared (set severity = 0).

4. The last step deletes all events from the temporary table
alerts.problem_events.

Now let us look at the delete_clears automation (Figure 6-50).

Figure 6-50 OMNIbus standard automation delete_clears

The delete_clears automation will delete the cleared events from the database
as long as they are older than two minutes.

To test this scenario we execute the following SQL statements with nco_sql
(Figure 6-51). Here look at the numbers previous to the word UPS. The type and
the severity are defined.

Figure 6-51 OMNIbus events for nco_sql execution

begin
delete from alerts.status where Severity = 0 and StateChange <
(getdate() - 120);
end

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values
('itso-corr-01', 'Fan down on UPS ups_atl', 'ups_atl', 'Agent', 1,
2, 'UPS', 'SNMP', 'nco_sql', getdate());

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values
('itso-corr-02', 'Temperature on UPS ups_atl is too high',
'ups_atl', 'Agent', 1, 3, 'UPS', 'SNMP', 'nco_sql', getdate());

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values
('itso-corr-03', 'Fan on UPS ups_atl is up again', 'ups_atl',
'Agent', 2, 1, 'UPS', 'SNMP', 'nco_sql', getdate());

224 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

After the events have been sent, we have the output in the OMNIbus event list
shown in Figure 6-52.

Figure 6-52 OMNIbus event list with correlated events

6.2.8 Propagating status change from cause to effect events

In this section we discuss propagating status change from cause to effect events.

Common description of the scenario
If the operator acknowledges the cause event, the status change should be
propagated to the effect event.

TEC implementation
Create specific rules for these event classes. Link the effect events to the cause
event at arrival. When the status of the cause event is changed to
acknowledged, also change the status of all the linked effect events to
acknowledged.

Note: For another worked example of a correlation (cause/effect) rule
scenario, see 7.2.6, “Automatic event management customization” on
page 284, where the equivalent of the TEC netview.rls is implemented in
OMNIbus.

 Chapter 6. Event processing 225

Solution
The linking of the effect to the cause event was previously done in Figure 6-43 on
page 218. Therefore, we only have to add the change rule for the
acknowledgements. The next rule provides this functionality. See Figure 6-53.

Figure 6-53 TEC change rule for status propagation for linked events

When then status of an UPS_Fan_Down event is changed to ACK or CLOSED,
then the event cache is searched for corresponding UPS_Temp_Degraded
events. If there are such events, they will get the same status.

change_rule: close_linked_auto:
 (
 description: 'When an administrator acks or closes a UPS_Fan_Down
we \
 want to ack or close the linked UPS_Temp_Degraded',
 event: _event of_class 'UPS_Fan_Down'
 where
 [
 date_reception: _date,
 event_handle: _ev_handle
],
 slot: status set_to _status within['ACK', 'CLOSED'],
 action: search_temp_degraded_and_close:
 (
 all_instances(event: _ev_temp_degraded of_class
'UPS_Temp_Degraded'
 where
 [
 status : outside ['CLOSED'],
 cause_date_reception : equals _date,
 cause_event_handle : equals _ev_handle
]
),
 set_event_status(_ev_temp_degraded, _status)
)
).

226 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

We tested this rule similarly to the test in the correlation section. The difference
here is that after sending the following two events the administrator
acknowledges the cause event. This results in the propagation of the status and
in the view shown in Figure 6-56 on the event console.

Figure 6-54 Cause event UPS_Fan_Down

Figure 6-55 Effect event UPS_Temp_Degraded

Figure 6-56 TEC event console after status propagation

OMNIbus implementation
In OMNIbus there is no difference between cause and effect events. They are
both problem events (type=1), but there are similar tasks to be handled. Assume
that a network management software monitors switches and sends events that
signal the failure of interfaces and nodes (switches). For example, see
Figure 6-57.

Figure 6-57 Events for OMNIbus correlation

UPS_Fan_Down;
 origin='9.36.11.3';
 hostname=mondorf;
 msg='Fan down on UPS mondorf';
 adapter_host=nfs_server;
END

UPS_Temp_Degraded;
 origin='9.36.11.3';
 hostname=mondorf;
 msg='Temperature on UPS mondorf is too high';
 adapter_host=nfs_server;
END

 Chapter 6. Event processing 227

The task is now to write a temporal trigger that clears all interface down events
for nodes (switches) that have corresponding node down events. In this
example, the two interface down events from the switch mondorf and the event
from the switch austin should be cleared, but not the one from the switch bonn,
because this event does not have a corresponding node down event.

Solution
To fulfill this requirement we provide an SQL statement. This SQL statement
should set the severity set to 0 (clear) for interface down events, but only for
those events whose own node is equal to an event with a corresponding node
down. Figure 6-58 shows the corresponding SQL code.

Figure 6-58 SQL correlation code example

When we put it in a temporal trigger that runs every minute, it produces the result
shown in Figure 6-59.

Figure 6-59 OMNIbus event console with result of the SQL correlation statement

6.2.9 Local and remote script execution

In this section we discuss local and remote script execution.

Common description of the scenario
When an event arrives, a specific program should be executed locally or
remotely. In addition, the execution should take place under a specific GID/UID.

TEC implementation
Create a specific rule for this event class. In a reception action call a local script
or start the execution of a TME task on a remote endpoint.

update alerts.status set Severity = 0 where Summary = 'interface
down' and Node in (select Node from alerts.status where Summary =
'node down')

228 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Solution
Before we execute a script or task in a TEC rule, we should test whether these
are working at the OS level. Here we show the script broadcast.sh.

Figure 6-60 Test script broadcast.sh

This will send a message to the Tivoli administrator’s desktop. The next script will
provide an echo to stdout and additionally to a file. Its contents are shown in
Figure 6-61.

Figure 6-61 Test script hello.sh

The purpose of this script is to be executed by a Tivoli task. The Tivoli task
should be run under a specific user, for example, db2inst1. When the script is
executed the output file hello.out should contain the UID of the user db1inst in
the file attributes in at OS level.

#!/bin/sh
text=$@
wbroadcast "$text"
exit 0

#!/bin/sh
echo "Hello from ACT - $1"
echo "Hello from ACT - $1" > /tmp/hello.out

 Chapter 6. Event processing 229

To run both we developed the TEC rules shown in Figure 6-62 after we
successfully tested the scripts and the task at OS level.

Figure 6-62 TEC rule exec_fan_down

Here you can see the predicates exec_program and exec_task, which execute
the corresponding scripts. We tested this by sending the following command.

wpostemsg -m test5 hostname=mondorf UPS_Fan_Down TEC

rule: exec_fan_down:
 (
 description: 'Executes the broadcast.sh script when we receive a \
 UPS_Fan_Down',
 event: _event of_class 'UPS_Fan_Down'
 where
 [
 hostname: _hostname
],
 reception_action: exec_fan_script:
 (
 exec_program(_event,
 'scripts/broadcast.sh',
 'Please check the fan of %s',
 [_hostname],
 'YES'
)
),
 reception_action: exec_hello_task:
 (
 exec_task(_event,
 'hello.ta',
 '-l "ACT.tl" -h "nottingham" -a "%s"',
 ['Wolfgang'],
 'YES'
)
)
).

230 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

This produces a broadcast pop-up on the Tivoli administrators desktop, as
shown in Figure 6-63.

Figure 6-63 Output of script broadcast.sh

After this the TEC event console shows the content shown in Figure 6-64.

Figure 6-64 Event list for executing scripts

 Chapter 6. Event processing 231

Figure 6-65 shows the task output that is provided by the TEC console.

Figure 6-65 TEC task output

Here we can see the echo to standard output of our script hello.sh.

And lastly we must look at the attributes of the output file in the file system
(Figure 6-66).

Figure 6-66 Attributes of /tmp/hello.*

-rw-r--r-- 1 db2inst1 nobody 26 Oct 03 15:42 /tmp/hello.out
-rwxr-xr-x 1 root system 83 Sep 21 10:58 /tmp/hello.sh

232 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

OMNIbus implementation

Create a database trigger that starts an external procedure locally or remotely
through process control.

Note: Process control has to be installed and configured on every target
machine on which you want to execute the procedure.

 Chapter 6. Event processing 233

Solution
When process control is installed and working properly, you must test your script
in the operating system environment. Then you can create an external procedure
(for example, named itso_7) in the OMNIbus administrator configuration dialog,
as in Figure 6-67.

Figure 6-67 Creation of an external OMNIbus procedure

You must provide the script name /tmp/hello.sh and the target machine.
Optionally, you can set the UID (for example, 2 for the daemon user). After
saving this procedure, you can execute it via execute procedure itso_7 in the

234 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

nco_sql interface. After the execution, you can see the following file attribute
information in the /tmp directory of the machine weimar:

-rw-r--r-- 1 daemon root 6 Oct 4 11:20 helllo.out

A database trigger that calls this procedure could also be used.

6.2.10 Escalation of event severity

In this section we discuss escalation of event severity.

Common description of the scenario
If an event is not closed 1 minute after arriving, set its severity to critical.

TEC implementation
Create a specific rule for this event class. Sets a timer for one minute in a
reception action. When the timer pops, examine the event’s status. If it is still
open, set the severity to critical.

 Chapter 6. Event processing 235

Solution
The following rule is separated into two parts. The first part is an action triggered
by reception of the event class UPS_Fan_Down. Here the timer level 1 is set with
a duration of 60 seconds. In the second part, the timer rule escalate_1 is
executed after 60 seconds and sets the severity to CRITICAL unless the status
has the content OPEN. You can se the code of both rules in Figure 6-68.

Figure 6-68 TEC rule timer setting and timer rule for escalation

We test this rule with the following wpostemsg command:

wpostemsg -m test-8 hostname=mondorf UPS_Fan_Down TEC

rule: exec_fan_down:
 (
 description: 'Executes the broadcast.sh script when we receive a \
 UPS_Fan_Down',
 event: _event of_class 'UPS_Fan_Down'
 where
 [
 hostname: _hostname
],
 action: set_timer:
 (
 set_timer(_event, 60, 'level1')
)
).

timer_rule: escalate_1:
 (
 description: 'When a UPS_Fan_Down stays open for more than 1
minute we want\
 to increase the severity to CRITICAL',
 event: _event of_class 'UPS_Fan_Down'
 where [
 status: equals 'OPEN'
],
 timer_info: equals 'level1',
 action: set_timer_and_escalate:
 (
 set_event_severity(_event, 'CRITICAL')
)
).

236 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

This command produces the next TEC console output (Figure 6-69).

Figure 6-69 TEC console for before escalation

After 60 seconds the TEC console looks like Figure 6-70.

Figure 6-70 TEC console after escalation

OMNIbus implementation
Create a temporal trigger that sets to 5 the severity of events that have the
Acknowledged field set to zero and the LastOccurrence field within the last
minute.

Solution
This request is similar to the default temporal trigger flash_not_ack. Therefore,
we can easily adapt this. Figure 6-71 shows the code.

Figure 6-71 OMNIbus temporal trigger for escalation

We tested this trigger by appending the next line to our applications log file:

2007-10-04 09:30:25 Mondorf appl01 MINOR test-8.

After adding this, the event list has the content shown in Figure 6-72.

Figure 6-72 OMNIbus event list before escalation

After the duration of 60 seconds the list looks like Figure 6-73.

Figure 6-73 OMNIbus event list after escalation

update alerts.status set Severity = 5 where Acknowledged = 0 and
LastOccurrence > (getdate - 60);

 Chapter 6. Event processing 237

6.2.11 Forwarding of events

In this section we discuss forwarding events.

Common description of the scenario
Send an incoming event to a trouble ticketing system.

TEC implementation
Create a specific rule for this event class. Call a script that has access to the
contents of the event and passes these contents to the trouble ticketing software.

First solution
The implementation of this request is identical to running a local script. This was
covered in 6.2.9, “Local and remote script execution” on page 228.

OMNIbus implementation
To implement:

1. Execute an external procedure.
2. Install a gateway for a trouble ticketing system or for an external database.

First solution
You can find this kind of a solution in 6.2.9, “Local and remote script execution”
on page 228.

Second solution
In our lab environment we do not have any gateways installed. Normally, you find
the following gateways installed:

� Gateway for HP Service Desk
� Gateway for Remedy ARS

6.2.12 Use of external information for logic control

In this section we discuss use of external information for logic control.

Common description of the scenario
Depending on the information that is stored outside the event sever, the logical
control of the event processing should be influenced.

238 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

TEC implementation
Create a fact file for the rulebase. Compile and consult it in an action in a rule file.
Later on, use it to control the logic of your rule.

Solution
Fact files contain prolog statements that are used in rules. Figure 6-74 shows a
fact file.

Figure 6-74 TEC fact file tec_r.tec_servers

tec_type('nottingham', 'MASTER').
tec_type('mondorf', 'SLAVE').

 Chapter 6. Event processing 239

Here you can see that the machine ‘nottingham’ is defined as a MASTER. Later
in the rule this statement will be dynamically created. The dynamic part is the
host name that will be extracted from the event attribute host name. The
extracted host name will be inserted here, so that this code line can have
different appearances. The corresponding code content is shown in Figure 6-75.

Figure 6-75 TEC rule for the use of global variables and fact files

Whenever the TEC starts, the host name will be put in a global variable named
‘This TEC’. With the compile and consult predicates, the content of the fact file is
compiled and loaded into the TEC knowledge base.

In the lab_use rule, the global variable ‘This TEC’ is read and the value assigned
to it is stored in the variable _tec_name. This variable is now the variable part of
our prolog statement. If this statement is identical to one line of our fact file, the
condition (statement) is true, and the execution of the rest of the rule actions are

rule: lab_init:
 (
 event: _event of_class 'TEC_Start'
 where [
 hostname: _hostname
],
 reception_action:
 (
 set_global_var('This TEC', 'Hostname', _hostname)
),
 reception_action:
 (
 compile('/entw/tec_r.tec_servers'),
 consult('/entw/tec_servers')
)
).

rule: lab_use :
 (
 event: _event of_class UPS,
 action:
 (
 get_global_var('This TEC', 'Hostname', _tec_name, ''),
 tec_type(_tec_name, 'MASTER'),
 bo_set_slotval(_event,sub_source,'fact-file OK');
)
).

240 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

executed, here the change of the sub_source attribute. If the fact file does not
contains this line, the execution of this statement fails.

To test this rule we send the next wpostemsg command:

wpostemsg -m test-fact-file hostname=nottingham TEC_Start TEC

After the execution of this event the TEC console looks like Figure 6-76.

Figure 6-76 TEC console after execution of a fact file

OMNIbus implementation
To influence the logic of OMNIbus triggers you must read data from an external
device.

Solution
A database table could be an external device, for example. We created the
database shown in Figure 6-77 called itso and the table named maintenance.

Figure 6-77 OMNIbus database itso.maintenance

In this database we created two columns. The Node column contains the host
name and the Status column contains either 0 for production or 1 for
maintenance.

The next step in controlling our logic with the content of this data is to create a
temporal trigger that, every 15 seconds, clears all the events from all nodes that
have the status 1 (here only Mondorf).

 Chapter 6. Event processing 241

The SQL statement looks like:

update alerts.status set Severity = 0 where Node in (select Node from
itso.maintenance where Status = 1)

The test of this trigger is done by adding one line to our application log:

2007-10-05 15:08:28 Mondorf appl01 MINOR test-21

After 15 seconds the event console has the appearance shown in Figure 6-78.

Figure 6-78 OMNIbus console after own logic control

6.3 Probe topics

In this section we describe other probe rules that may be helpful in some
environments. We also introduce methods for the self-monitoring of probes.

6.3.1 Measuring load and numbers of events in a time frame

The requirement is to measure how many events the probe processes in a
defined time frame.

Solution
The code shown in Figure 6-79 provides the solution.

Figure 6-79 Example of updateload, getload, and geteventcount functions

The first line defines a one-dimensional array. The condition is used to define the
initial load/count measurement. Here the interval is set to 60 seconds, and a

array loads
...
if (match(loads[@Node],""))
 {
 loads[@Node]="60.50"
 }
loads[@Node]=updateload(loads[@Node])
%current_load=getload(loads[@Node])
@Location=%current_load
@AlertGroup = geteventcount(loads[@Node])

242 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

boundary is set to a maximum of 50 events. If there are more than 50 events
within 60 seconds, then the oldest will be discarded. The updateload line updates
the measurement, and the getload line stores the current load in a variable. And,
finally, the number of events in the time frame is assigned to the Field
AlertGroup.

To test this function we add several lines to our application file:

2007-10-05 11:07:25 Mondorf appl01 MINOR test-9
2007-10-05 11:07:26 Mondorf appl01 MINOR test-9
2007-10-05 11:07:27 Mondorf appl01 MINOR test-9
2007-10-05 11:07:27 Mondorf appl01 MINOR test-9
2007-10-05 11:07:28 Mondorf appl01 MINOR test-9

This results in the display on event console, shown in Figure 6-80.

Figure 6-80 OMNIbus event console with counting and load information

On the event console you can see the counting information in the field
AlertGroup and the load of the probe in the Location field. This information can
be used in other triggers.

6.3.2 Self monitoring

Most of the probes have a self-monitoring capability implemented, so they will
send an event in the following cases:

� Going down
� Running
� Unable to get events

6.3.3 Parsing failed

In a TEC environment events can be sent with class or attribute definitions that
are not defined at the server level. These events are documented as PARSING
FAILED. In the OMNIbus environment the corresponding parsing failed is
checked at the startup of a probe. Here all assignments are checked against the
ObjectServer if the fields exist in the database schema. If one or more fields are
not defined, the probe does not start. This situation is logged in the logfile
$OMNIHOME/log/probe-name.log.

 Chapter 6. Event processing 243

6.3.4 EIF rules file and extended attributes

Refering to our recommended upgrade strategy, there will be a situation where
you switch the TEC adapter to the OMNIbus environment. The events will be
delivered through the EIF probe to the OMNIbus ObjectServer. This section
shows you the flow and the access to custom-developed TEC class attributes.

The rules file tivoli_eif.rules that is delivered with the EIF probe is the best
location in which to move custom-developed TEC class attributes content to the
new ObjectServer field ExtendedAttr.

When we look at the file tecad_logfile.baroc, for example, we see the classes
shown in Figure 6-81.

Figure 6-81 Extract from tecad_logfile.baroc

Here we can find typical custom attributes (for example, from_user, to_user, or
on_tty). Now we send the next wpostemsg to the TEC server:

wpostemsg -r MINOR -m test41 hostname=mondorf from_user=db2inst1
to_user=root on_tty=/dev/pts/4 Su_Failure TEC

TEC_CLASS :
 Logfile_Su ISA Logfile_Base
 DEFINES {
 from_user: STRING, dup_detect = yes;
 to_user: STRING, dup_detect = yes;
 on_tty: STRING, dup_detect = yes;
 severity: default = WARNING;
 };
END
TEC_CLASS :
 Su_Success ISA Logfile_Su;
END
TEC_CLASS :
 Su_Failure ISA Logfile_Su;
END

244 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

After receiving this event at the TEC server we can see its content, as shown in
Figure 6-82.

Figure 6-82 Extract of a SU_Failure event

When the event is forwarded through the EIF probe, the content of this must be
assigned to ObjectServer fields. To avoid extending the database schema of the
ObjectServer for every class attribute, the new field ExtendedAttr should be used
instead. Now we must develop for every TEC class, which we want to use
unmodified at the ObjectServer, an assignment in the EIF probe rules file like in
Figure 6-83. Here we identified the TEC class with an IF statement. When many
different classes must go through the EIF probe rule, a SWITCH statement
should be used instead.

Figure 6-83 Assignment from TEC class attributes to ObjectServer field ExtendedAttr

We can see the result of this code extract in the event details in the ObjectServer
event list, as shown in Figure 6-84.

Figure 6-84 Content of the ExtendedAttr field

On the basis of Figure 6-84 we can try to explain the use of the parameters of the
nvp_add command in Figure 6-82. We used the Su_Failure string, because we
wanted to search in the OMNIbus automation in the ExtendedAttr field for a

@ExtendedAttr=nvp_add(@ExtendedAttr, "Su_Failure",
"any-text","from_user", $from_user, "to_user", $to_user, "on_tty",
$on_tty)

 Chapter 6. Event processing 245

variable name, rather than the content of the variable. Variable names in our
example are Su_Failure, from_user, to_user, and on_tty (all variables that do not
show up with quotation marks).

If we want to access the content of the field ExtendedAttr in an OMNIbus
automation we must develop, for example, the corresponding trigger, as in
Figure 6-85.

Figure 6-85 OMNIbus database trigger on insertion for TEC attributes

After implementing this automation, the wpostemsg event originated at the TEC
server, forwarded and processed through the EIF probe (triggered by the above
database trigger), and arrived on the OMNIbus event list, as shown in
Figure 6-86.

This code example shows only the technique to access the extended attribute.
The design of this solution would normally be done at the probe level.

Figure 6-86 TEC event arrived at OMNIbus event list

begin
 if (nvp_exists(new.ExtendedAttr, 'Su_Failure') = TRUE)
 THEN
 update alerts.status via new.Identifier
 set Location = nvp_get(new.ExtendedAttr, 'from_user') + '-' +
 nvp_get(new.ExtendedAttr, 'to_user') + '-' +
 nvp_get(new.ExtendedAttr, 'on_tty');
 end if;
end

246 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

6.4 Support of TEC class hierarchy

The support of the TEC class hierarchy is based on the fact that there are TEC
rules that are defined against parent classes, as in Figure 6-87.

Figure 6-87 TEC rule against a parent class UPS

This rule fires against the leaf TEC classes UPS_Fan_Down,
UPS_Temp_Degraded, and UPS_Fan_Up. These classes are defined in the
baroc file ups.baroc, which is listed in Figure 6-4 on page 193.

We test the above rule with the following wpostemsg commands:

wpostemsg -m test-hierarchy-01 hostname=mondorf sub_origin=hierarchy
UPS_Fan_Down TEC

wpostemsg -m test-hierarchy-02 hostname=mondorf sub_origin=hierarchy
UPS_Temp_Degraded TEC

On the TEC event console it looks like Figure 6-88.

Figure 6-88 TEC console for a hierarchy event

rule: support_hierarchy:
 (
 description: 'This event will be excuted later by a procedure at
the OMNIbus server',
 event:_event of_class 'UPS'
 where
 [
 sub_origin: equals 'hierarchy'
],
 action: filter:
 (
 bo_set_slotval(_event,sub_source,'support hierarchy')
)
).

 Chapter 6. Event processing 247

When this event is forwarded from the TEC server to the EIF probe, the field
AlertGroup is filled with the TEC class name, and here we have added the
assignment @Summary = $msg to the standard EIF rules file tivoli_eif.rules to fill
the summary field. The details of this event at the OMNIbus server are shown in
Figure 6-89.

Figure 6-89 Forwarded TEC event through EIF probe

To perform similar event processing as the above TEC rule we must execute
some tasks first.

Note: The EIF probe and the first integration packages (NetView and ITM)
that use the EIF probe were developed before OMNIbus 7.2 went GA, so they
do not yet support the TEC class hierarchy.

Today there is no automated method for generating probe statements to parse
the TEC class name (%ClassName) and assign the correct TEC class number
in the ObjectServer class field. A switch statement needs to be manually
created to perform this assignment based on values extracted from the output
of the nco_baroc2sql script. A revised version of this script is planned that will
provide the required probe rule data.

248 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

First we must copy the rulebase from the TEC server to the OMNIbus server to
make the TEC classes available here. We have access to
/tmp-ws/TEC_CLASSES. There we find the file .load_classes, illustrated in
Figure 6-90.

Figure 6-90 File .load_classes

Now we used the new command nco_baroc2sql with the following syntax:

nco_baroc2sql -baroc /tmp-ws/TEC_CLASSES/.load_classes -sql insert.sql

It produced the output shown in Figure 6-91.

Figure 6-91 Output of nco_baroc2sql

root.baroc
tec.baroc
ups.baroc

Info - Processing file /tmp-ws/TEC_CLASSES/root.baroc
Info - Processing file /tmp-ws/TEC_CLASSES/tec.baroc
Info - Processing file /tmp-ws/TEC_CLASSES/ups.baroc
Info - Processed 27 BAROC classes.

 Chapter 6. Event processing 249

The created file insert.sql contains two parts, as shown in Figure 6-92.

Figure 6-92 File insert.sql - part one

Note that in this part we omitted the following prefix from the second line to the
last, but one, line so that it can be easier read:

insert into master.class_membership (Class, ClassName, Parent) values

insert into master.class_membership (Class, ClassName, Parent)
values (76013, 'DB_Cleanup_event', 76000);
 (76010, 'TEC_Maintenance', 76000);
 (76006, 'TEC_Stop', 76000);
 (76008, 'TEC_Heartbeat', 76000);
 (76015, 'TEC_Tick', 76000);
 (76017, 'TEC_GWR_Event', 76000);
 (76005, 'TEC_Start', 76000);
 (76018, 'TEC_GWR_Start', 76017);
 (76002, 'TASK_COMPLETE', 76000);
 (76022, 'TEC_GWR_Error', 76017);
 (76007, 'TEC_DB', 76000);
 (76014, 'TEC_Generic', 76000);
 (76012, 'Escalate_event', 76000);
 (76021, 'TEC_GWR_Notice', 76017);
 (76011, 'TEC_Cleanup_event', 76000);
 (76024, 'UPS_Fan_Down', 76023);
 (76000, 'EVENT', -1);
 (76009, 'TEC_Heartbeat_missed', 76000);
 (76001, 'TASK', -1);
 (76025, 'UPS_Temp_Degraded', 76023);
 (76026, 'UPS_Fan_Up', 76023);
 (76003, 'TEC_Error', 76000);
 (76023, 'UPS', 76000);
 (76004, 'TEC_Notice', 76000);
 (76019, 'TEC_GWR_Stop', 76017);
 (76020, 'TEC_GWR_ReStart', 76017);
insert into master.class_membership (Class, ClassName, Parent)
values (76016, 'TEC_LOGGING_BASE', 76000);
go

250 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

These SQL statements implement the class hierarchy in the ObjectServer. Now
let us look at the second part (Figure 6-93).

Figure 6-93 File insert.sql - part two

Note that for reading purposes we have omitted text here, the same omitting as
in part one.

This part extends the conversion table of the OMNIbus server. We executed both
parts with the following nco_sql command:

nco_sql -user root -server WEIMAR -password "" < insert.sql

insert into alerts.conversions values ('Class76013', 'Class',
76013, 'DB_Cleanup_event');
 ('Class76010', 'Class', 76010, 'TEC_Maintenance');
 ('Class76006', 'Class', 76006, 'TEC_Stop');
 ('Class76008', 'Class', 76008, 'TEC_Heartbeat');
 ('Class76015', 'Class', 76015, 'TEC_Tick');
 ('Class76017', 'Class', 76017, 'TEC_GWR_Event');
 ('Class76005', 'Class', 76005, 'TEC_Start');
 ('Class76018', 'Class', 76018, 'TEC_GWR_Start');
 ('Class76002', 'Class', 76002, 'TASK_COMPLETE');
 ('Class76022', 'Class', 76022, 'TEC_GWR_Error');
 ('Class76007', 'Class', 76007, 'TEC_DB');
 ('Class76014', 'Class', 76014, 'TEC_Generic');
 ('Class76012', 'Class', 76012, 'Escalate_event');
 ('Class76021', 'Class', 76021, 'TEC_GWR_Notice');
 ('Class76011', 'Class', 76011, 'TEC_Cleanup_event');
 ('Class76024', 'Class', 76024, 'UPS_Fan_Down');
 ('Class76000', 'Class', 76000, 'EVENT');
 ('Class76009', 'Class', 76009, 'TEC_Heartbeat_missed');
 ('Class76001', 'Class', 76001, 'TASK');
 ('Class76025', 'Class', 76025, 'UPS_Temp_Degraded');
 ('Class76026', 'Class', 76026, 'UPS_Fan_Up');
 ('Class76003', 'Class', 76003, 'TEC_Error');
 ('Class76023', 'Class', 76023, 'UPS');
 ('Class76004', 'Class', 76004, 'TEC_Notice');
 ('Class76019', 'Class', 76019, 'TEC_GWR_Stop');
 ('Class76020', 'Class', 76020, 'TEC_GWR_ReStart');
insert into alerts.conversions values ('Class76016', 'Class',
76016, 'TEC_LOGGING_BASE');
go

 Chapter 6. Event processing 251

The result of this command is listed in Figure 6-94 and Figure 6-95 on page 253.

Figure 6-94 Content of OMNIbus table master.class_membership

252 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 6-95 Content of OMNIbus table alerts.conversions

Based on the master.class_membership table, we will create a lookup table to be
used in the tivoli_eif.rules file to fill the ObjectServer Class field, depending on
the content of the TEC class name. First we create an ObjectServer file that will
be filled with lookup table information by using an SQL procedure. To create this
file we execute the following command:

create or replace file lookup '/tmp/tec_lookup' maxfiles 1 maxsize 1M;
go

Now we create the SQL procedure to fill:

create or replace procedure class_lookup_create()
begin
 for each row tempclass in master.class_membership
where tempclass.Class >= 76000 and tempclass.Class <= 86000

 Chapter 6. Event processing 253

 begin
 write into lookup
 values (tempclass.ClassName ,'',to_char (tempclass.Class));
 end;
end
go

Next, we execute this procedure with the following SQL statements:

execute procedure class_lookup_create;
go

Now the lookup file looks like Example 6-2.

Example 6-2 New lookup file

TASK 76001
EVENT 76000
TEC_Error 76003
TASK_COMPLETE 76002
TEC_Notice 76004
TEC_Start 76005
TEC_DB 76007
TEC_Stop 76006
TEC_Heartbeat_missed 76009
TEC_Heartbeat 76008
TEC_Cleanup_event 76011
TEC_Maintenance 76010
Escalate_event 76012
DB_Cleanup_event 76013
TEC_Generic 76014
TEC_Tick 76015
TEC_LOGGING_BASE 76016
TEC_GWR_Event 76017
UPS 76023
TEC_GWR_Stop 76019
TEC_GWR_Start 76018
TEC_GWR_ReStart 76020
TEC_GWR_Notice 76021
TEC_GWR_Error 76022
UPS_Temp_Degraded 76025
UPS_Fan_Down 76024
UPS_Fan_Up 76026

254 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

We can now use this file in our tivolil_eif.rules file at the top of the file by inserting
the next two lines:

table tec_class = "/tmp/tec_lookup1"
default = "Unknown"

To use this in the rules file we provide the next statement as follows:

$Class = lookup($ClassName,tec_class)

Here we fill the ObjectServer Class field with a number that is dependent on the
TEC class name.

The goal of this section is to implement a similar automation function regarding
the TEC hierarchy as the above implemented TEC rule. Therefore, we
developed the next SQL procedure. See Figure 6-96.

Figure 6-96 OMNIbus SQL procedure for hierarchical TEC events

Here all rows of the alerts.status are inspected as to whether the content of the
AlertGroup field is a child class of the TEC parent class ‘UPS’. In this case the
Summary field is set to ‘hierarchy-test-ok’. Figure 6-97 and Figure 6-98 show our
test before and after the execution of the above procedure. You must pay
attention to the Summary field to see the differences.

Figure 6-97 OMNIbus events before procedure execution

Figure 6-98 OMNIbus events after procedure execution

begin
 for each row tmp in alerts.status
 begin
 if (instance_of (tmp.Class, 'UPS') = TRUE) THEN
 set tmp.Summary = 'hierarchy-test-ok';
 end if;
 end;
end

 Chapter 6. Event processing 255

We demonstrated that we can execute OMNIbus automation in the context of a
TEC class hierarchy.

6.5 TEC information/URL information for events

Many customers use the TEC information button on the TEC console to display
adapted help text. Figure 6-99 shows this button in the right bottom corner.

Figure 6-99 TEC console with information button

When you click this button the browser starts and the next URL is shown. Here
we selected the Su_Failure event to demonstrate this.

256 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 6-100 TEC sample event information for class Su_Failure

 Chapter 6. Event processing 257

What happens behind the scene? The TEC console starts the perl script
tec_help.pl from the directory /Tivoli/bin/aix4-r1/TAS/HTTPd/cgi-bin. Let us look
at parts of this script (Figure 6-101).

Figure 6-101 Extract of the file tec_help.pl

In the first part the TEC attribute contents are assigned to local variables. In the
second and the third part the specific file name, dependent on the event
attributes, is constructed. In part four we test whether the specific file name
(starting from the specific file name to the common file name) exists and, if so,
whether it will be printed to standard out, which is piped to the browser here. The
HTML input files are located in the directory /Tivoli/bin/generic/HTTPd/Tec.

...part 1...
$class = $input{'class'};
$classDOThostname .= $class . "." . $input{'hostname'};
$classDOThostnameDOTsource .= $classDOThostname . "." .
$input{'source'};
$classDOThostnameDOTsourceDOTseverity .= $classDOThostnameDOTsource
. "." . $input{'severity'};
...part 2...
$prefilename = "/Tivoli/bin/aix4-r1/../generic/HTTPd/Tec/";
$locfilename = $prefilename . $locale . '/';
$locfilename0 = $locfilename .
$classDOThostnameDOTsourceDOTseverity;
$locfilename1 = $locfilename . $classDOThostnameDOTsource;
$locfilename2 = $locfilename . $classDOThostname;
$locfilename3 = $locfilename . $class;
...partr 3...
$testfilename0 = $prefilename .
$classDOThostnameDOTsourceDOTseverity;
$testfilename1 = $prefilename . $classDOThostnameDOTsource;
$testfilename2 = $prefilename . $classDOThostname;
$testfilename3 = $prefilename . $class;
...part 4...
if (-e $testfilename0) {
 &PRINT_OUT_FILE_CONTENTS($testfilename0);
}
elsif (-e $testfilename1) {
 &PRINT_OUT_FILE_CONTENTS($testfilename1);
}
elsif (-e $testfilename2) {
 &PRINT_OUT_FILE_CONTENTS($testfilename2);
}

258 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Su_Failure is one of the file names in this directory and contains the content
shown in Figure 6-102.

Figure 6-102 First lines of file Su_Failure

It will be very helpful for customers if the content of this directory can be used in
OMNIbus without modification. We show two solutions that cover this topic.

Solution one
In OMNIbus there is a standard attribute named URL. If this field is filled at the
probe level the operator can use the standard tool of the OMNIbus event
console: Alert → Tool → URL. After this the browser opens with this specified
URL. We test this functionality by inserting an event via nco_sql with the
statement shown in Figure 6-103

Figure 6-103 nco_sql input for an event with a filled URL field

<!-- TRANSLATORS: Do NOT change any occurrences of Su_Failure.
 This file is a template. During the automated build of the
product, that
 text is replaced.
-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=ISO-8859-1">
<TITLE>Su_Failure</TITLE>

</HEAD>

<BODY>

<H2>Sample event information file for class
 Su_Failure
</H2>

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence, URL) values
('itso-help-01', 'Su_Failure event', 'mondorf', 'Agent', 1, 3,
'UPS', 'SNMP', 'nco_sql', getdate(),
'/tec-http/HTTPd/Tec/Su_Failure');
go

 Chapter 6. Event processing 259

After sending this event with nco_sql it shows up at the event list, as shown in
Figure 6-104.

Figure 6-104 OMNIbus event list for the specific URL event

260 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

When we now select the event and use the above described tool, we get the
browser appearance shown in Figure 6-105.

Figure 6-105 Browser output for the specified URL

 Chapter 6. Event processing 261

To get this output we copied the directory /Tivoli/bin/generic/HTTPd/Tec and its
content files from the TEC machine nottingham to the directory
/tec-http/HTTPd/Tec onto the OMNIbus machine weimar.

In this solution you must define the help URL at the probe level for every event
type.

Solution two
This solution depends on a script that you use centrally at the OMNIbus event list
similar to the TEC information script. It would be nice to use the same script as it
is delivered with TEC. This will not work because the attribute names and the
attribute contents are passed from the TEC console as environment variables to
this script and OMNIbus does this differently. In OMNIbus you can execute a
script with parameters, and these parameters contain the content of event
attributes.

Let us now look at how to the start this tool. We changed the tool “Open URL”
from $OMNIBROWSER @URL to:

$OMNIBROWSER
"http://weimar/cgi-bin/tec_help.pl?class=@AlertGroup;sub_origin=@Node;p
rio=@Severity"

Let us look at the sample script tec_help.pl in Example 6-3, which we used in our
lab environment. We put the variables in bold. To get this script working we
installed on the machine weimar the Web server from the Red Hat Linux CD,
copied this script to /var/www/cgi-bin, and changed the attributes so that they can
be executed. This script reads several files from flat files that are located under
the /tecinfo directory. We will reference them here.

Example 6-3 Perl script to generate dynamic HTML pages

#!/usr/bin/perl
#---#
filename: tec_help.pl
#---#
#
Description:
This CGI script creates an infomation html page
#
#---#

modules
use CGI qw/:standard/;

variables and structures

262 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

my %Parameter;
my
@month=('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Nov','De
c');
my $InfoPath="/tecinfo";
my @WhatText=();
my @HowText=();

Main
foreach $key (param()) {
system("mkdir -p $InfoPath/$key") if(! -d "$InfoPath/$key");

$Parameter{$key}=param($key);
}
my @ClassText=`cat $InfoPath/class/$Parameter{'class'}`;
my @WhoText=`cat $InfoPath/sub_origin/$Parameter{'sub_origin'}`;

foreach $_ (@ClassText) {
chomp;
if(/\[Description/) {

$readflg=1;
} elsif(/\[Action/) {

$readflg=2;
}else {
push(@WhatText,"$_\n")if $readflg == 1 ;
push(@HowText,"$_\n")if $readflg == 2 ;
}

}

html_header();
info_menu();
get_prio();
event_what();
event_how();
event_who();
event_detail();
html_end();

sub html_header {
print "Content-type: text/html;Charset=iso-8859-1\n";
print "\n";
print "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 3.2 Final//EN\">\n";
print "<HTML>\n";
print "<HEAD>\n";
print "<META HTTP-EQUIV=\"Content-Type\" CONTENT=\"text/html;

charset=ISO-8859-1\">\n";

 Chapter 6. Event processing 263

print "<TITLE>".$Parameter{'class'}."</TITLE>\n";
print "</HEAD>\n";
print "<BODY>\n";

}
sub html_end {

print "</BODY>\n";
print "</HTML>\n";

}
sub info_menu {

print "<H2>Event information for class\n";
print "".$Parameter{'class'}."\n";
print "</H2>\n";
print "\n";
print "What does this message

mean?\n";
print "What should I do with this

message?\n";
print "Who should be

informed?\n";
print "Event-Details\n";
print "\n";
print "<HR>\n";

}

sub event_what {
print "<H3>What does this message

mean?</h3>\n";
print "\n";
foreach $_ (@WhatText) {

print "$_
\n";
}
print "\n";
print "<H5>Back to top</H5>\n";
print "<HR>\n";

}

sub event_how {
print "<H3>What should I do with this

message?</h3>\n";
print "\n";
foreach $_ (@HowText) {

print "$_
\n";
}

264 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

print "\n";
print "<H5>Back to top</H5>\n";
print "<HR>\n";

}

sub event_who {
print "<H3>Who should I inform?</h3>\n";
print "\n";
foreach $_ (@WhoText) {

print "$_
\n";
}
print "\n";
print "<H5>Back to top</H5>\n";
print "<HR>\n";

}

sub event_detail {
print "<h3>Passed parameters:</h3><p>\n";
print "<TABLE BORDER=1 CELLPADDING=4 WIDTH=90%>\n";
print "<TR><TD>Parameter</TD><TD>Wert</TD></TR>\n";
foreach $_ (sort keys %Parameter) {

if(/last_modified_time/ || /date_reception/) {

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=localtime($Parame
ter{$_});

$value=sprintf("%3s %02d %02d:%02d:%02d
%04d\n",$month[$mon],$mday,$hour,$min,$sec,$year+1900);

} else {
if($Parameter{$_}) {

$value=$Parameter{$_};
} else {

$value=" ";
}

}

print "<TR><TD>$_</TD><TD><FONT
COLOR=\"#0000F5\">$value</TD></TR>\n";

}
print "</TABLE>\n";
print "</p><H5>Back to top</H5>\n";

}

sub get_prio {
@PrioText=`cat $InfoPath/prio/$Parameter{'prio'}`;

 Chapter 6. Event processing 265

if($Parameter{'prio'} == 1) {
print "\n";

} elsif ($Parameter{'prio'} == 2) {
print "\n";

} elsif ($Parameter{'prio'} == 3) {
print "\n";

}
foreach $_ (@PrioText) {

print "<center>$_
</center>\n";
}
print "\n";

}

This script uses the passed parameters and generates, with the help of text files,
dynamic HTML code, which is presented in the browser that is referenced with
the variable OMNIBROWSER.

The ClassText variable will contain the content of the file
/tecinfo/classes/<class-name>. In our example this is the content of the attribute
AlertGroup. The WhoText variable contains the content of the file
/tecinfo/sub_origin/<who-name>. Here the variable who-name is substituted with
the content of the attribute node. Finally, we have the third and last variable
PrioText, which will contain the priority depending on the attribute Severity field.

We will send two events with nco_sql to OMNIbus and will look at the URLs by
using the URL tool depending on the selection of an event. The first event is:

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values
('itso-help-02', 'Su_Failure event', 'mondorf', 'Agent', 1, 2, 'UPS',
'Su_Failure', 'nco_sql', getdate());
go

The execution of this SQL statement results in the event list shown in
Figure 6-106.

Figure 6-106 OMNIbus event list for the first help event

266 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

When we use now the modified URL tool with Alerts → Tools → URL, we get
the browser content shown in Figure 6-107 and Figure 6-108.

Figure 6-107 Browser help text for Su_Failure event - part one

Let us look at the content of the file /tecinfo/classes/Su_Failure (Figure 6-108).

Figure 6-108 Content of file /tecinfo/classes/Su_Failure

[Description]
Someone tryed to switch the UID
Refer to the attribut user_to

[Action]
If the taget user is root, call the college which is referenced in
the attribute from_user

 Chapter 6. Event processing 267

Here you can see that the content of the text file is shown in the browser. Another
part of the browser content shows the file /tecinfo/prio/2, which contains the text
shown in Figure 6-109.

Figure 6-109 Content of file /tecinfo/prio/2

In the second part of the browser’s content you see who should be informed, and
you can see the passed parameters (Figure 6-110).

Figure 6-110 Browser help text for Su_Failure event - part two

Priority 2 (Medium)

268 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Now it is time to look at the file /tecinfo/sub_origin/mondorf (Figure 6-111).

Figure 6-111 Content of file /tecinfo/sub_origin/mondorf

You can see that this is the part that is shown under the topic “Who should I
inform” in the browser.

Now we send the second event:

insert into alerts.status (Identifier, Summary, Node, Agent, Type,
Severity, AlertKey, AlertGroup, Manager, LastOccurrence) values
('itso-help-03', 'UPS_Fan_down event', 'nottingham', 'Agent', 1, 3,
'UPS', 'UPS_Fan_Down', 'nco_sql', getdate());
go

For this event we use the same tool as the OMNIbus event list. Let us look at this
event (Figure 6-112).

Figure 6-112 OMNIbus event list for the second help event

Unix Support

Monday thru Sunday
00:00 - 24:00

Please send a message to
unix-group

 Chapter 6. Event processing 269

Now we can inspect the corresponding browser and file contents (Figure 6-113).

Figure 6-113 Browser help text for TEC_Start event - part one

The content of the file /tecinfo/classes/UPS_Fan_Down looks like Figure 6-114.

Figure 6-114 Content of the file /tecinfo/classes/UPS_Fan_Down

[Description]
The fan of the UPS is down.

[Action]
Call the service 999 and inform them about this topic

270 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Another assignment shows the file /tecinfo/prio/3, which contains the text shown
in Figure 6-115.

Figure 6-115 Content of file /tecinfo/prio/3

The content of the file /tecinfo/sub_origin/nottingham looks like Figure 6-116.

Figure 6-116 Content of file /tecinfo/sub_origin/nottingham

Priority 3 (low)

UPS Support

Monday thru Sunday
00:00 - 24:00

Please send a message to
UPS-group

 Chapter 6. Event processing 271

The second part of the browser content shows the text shown in Figure 6-117.

Figure 6-117 Browser help text for TEC_Start event - part two

In the second solution we provided, at a central location, a script to generate
dynamic HTML pages. Combined with the first solution we cover the most used
scenarios of the TEC world regarding this topic.

The advantage of the second solution is that the messages that are presented in
the browser are plain text. Therefore, they can easily be created from the
appropriate responsible department.

272 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

6.5.1 Rule best practices for performance

There are several features of OMNIbus and the OMNIbus probe language that
can be utilized to handle high event rates in a large production environment.
These techniques can be used in high traffic environments, as well as simply to
process event suppression and other event control situations, for example:

� Using direct advantage of de-duplication to clear events
� Using the probe to send to tables other than alerts.status
� Keeping alarms that must be consolidated, out of alerts.status
� Using the load functions within the probe rules

Typically, the Generic Clear automation is used to match a resolution event to a
problem event and clear the event in the Event List. With more control over
de-duplication in v7.x, you can use common identifiers for problem and resolution
events, and properly update the problem event to indicate the circumstances of
the event resolution. The benefits in using de-duplication for clearing are:

� Reduce Generic Clear overhead - The Generic Clear automation requires a
good deal of processing because of two stages of gathering potentially large
tables in memory.

� Instant clearing - Clearing by deduplication happens instantly. Generic Clear
runs on a timed cycle.

� Reduce overall number of events - The number of events is reduced by half
for all cases implemented.

6.5.2 Debugging using Netcool IDE

Given a customer-supplied rules and raw capture file, you can set up the Netcool
IDE on Windows to allow raw capture files to be played back without processing
the events through an ObjectServer. It provides an offline development and dry
run replaying method for developing probe rules file logic. It provides replayed
alarms, seeing how the developed rules file affect the event in real time.

Unless you are running the probes on a Windows machine, you will most likely
need to modify the paths in the rules files that refer to external files, such as
include files and lookup files. To correct for these discrepancies the IDE has a
tool that will either make the changes in its memory resident copy of the rules file
or optionally on disk.

The IDE needs to have an ObjectServer schema defined that it can validate the
rules file. You need either an ObjectServer with the correct schema or a .sql file
with the correct schema. In OMNIbus Version 7 this would be the application.sql
file from $OMNIHOME/etc. If you have a sql file with your fields, use that. If not,
you can use the enclosed V7 file (application.sql).

 Chapter 6. Event processing 273

Remember that you are not using an actual ObjectServer, so certain features
that we take for granted are not available (like deduplication). Each event in the
capture file will be represented as a new event in the list rather than
deduplicating. Since this application is memory resident you will quickly use
several hundred megabytes of RAM, so take advantage of the pause button
located to the left of the event list.

6.5.3 Netcool Knowledge Library

The Netcool/OMNIbus Netcool Knowledge Library (NcKL) is an important
component of the correlation capabilities. The Knowledge Library improves the
capability of the Netcool/OMNIbus by providing more valuable information. The
Knowledge Library is written to a common standard, and provides improved
correlation and causal analysis for the IBM Tivoli Netcool suite. A set of formally
tested ready to run probe rules for specific devices identify which alarms indicate
actual failures. This allows repair efforts to focus on the issues (or root causes)
that truly affect the operation of the infrastructure, without the distraction of the
symptomatic or informational events. The device-specific rules dictate how
events should be correlated by providing greater detail on the specific
containment of events for a particular device. These rules complement the
current out-of-the-box event correlation capabilities of Netcool/OMNIbus and
Tivoli Network Manager, enabling enhanced root cause analysis.

Root cause analysis has become an issue of paramount importance for the
management of communications and information systems infrastructures.
Loosely defined, root cause analysis is the process of making sense of large
numbers of alert, status, and informational messages (events) that might be
generated by such infrastructures.

While some events indicate actual failures that require correction, many others
are simply symptoms of the actual failures, or informational messages about
normal operations of the infrastructure. Netcool/OMNIbus Knowledge Library
aims to identify which alarms indicate actual failures, allowing repair efforts to
focus on the issues (or root causes) that truly affect the operation of the
infrastructure, without the distraction of the symptomatic or informational events.
The end result is a reduction of mean time to repair and increased availability of
the systems.

The Knowledge Library additionally increases the ability of the Tivoli
Netcool/OMNIbus ObjectServer automations to correlate alarms and identify root
causes by employing the following techniques:

� Event pre-classification: This process identifies and flags events within the
probe rules files to indicate the causal relevance of events, where this can be
determined without the need for correlation.

274 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

� Intra-device correlation: This process enhances probe rules files and adds
automations to the ObjectServer to perform correlation beyond deduplication
and problem/resolution correlation, identifying intra-device root causes and
symptoms.

� AMOS extended event recognition (for IBM Tivoli Network Manager IP Edition
integration): This process provides IBM Tivoli Network Manager IP Edition
with a larger data set upon which to perform topology-based event
correlation, by identifying a larger set of events for analysis.

To effectively install IBM Tivoli Netcool/OMNIbus Knowledge Library and fully
realize the benefits delivered, you must be familiar with the underlying principles
of IBM Tivoli Netcool/OMNIbus v7.x, including the following:

� The IBM Tivoli Netcool/OMNIbus components

– The ObjectServer (including the database tables and columns)

– Probes (including editing probe properties and stopping/restarting probes)

– Desktop tools (including event lists, filters, and views)

– Administration tools (including the IBM Tivoli Netcool/OMNIbus
Administrator, the SQL interactive interface, and process control)

� The IBM Tivoli Netcool/OMNIbus v7.x directory structure and necessary
configuration files

� Basic rules file syntax including the use of lookup tables (both inline and
separate files)

� Permissions, conversions, and automations

 Chapter 6. Event processing 275

276 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Chapter 7. Configuring the event
sources

In this chapter we describe how to perform the final tasks of event sources
migration and configuration in order to enable OMNIbus to receive events from
the entire infrastructure.

7

© Copyright IBM Corp. 2008. All rights reserved. 277

7.1 Adding a rule to forward raw events to OMNIbus

The first phase of the upgrade process, once the TEC and the OMNIbus
environments are installed, is to forward on events from TEC, before they have
gone through TEC rules, to the EIF probe and then on to OMNIbus. Doing this
when they are in the raw state allows a better comparison of the event
processing, and is particularly useful while developing the OMNIbus event
automations.

To ensure that the events have not been processed by TEC before being passed
on, it is important to load the rule as the first rule in the rulebase on TEC.

We also recommend using the TEC rules predicate ‘re_send_event_conf’ rather
than ‘forward_event’ so that multiple destinations can be specified in the
configuration files, and the corresponding cache files configured, too. This is
important if your TEC already forwards to another system. We created a rule
called forward.rls.

The configuration steps are:

1. Create the rule shown in Figure 7-1.

Figure 7-1 TEC forwarding rules

/***
*****/
/*
 This ruleset is used for forwarding events
*/

/*************************** Reception Rules
****************************/
rule: forward:
(

event: _event of_class EVENT,
reception_action: forward:
(

re_send_event_conf('eif-weimar',_event),
re_send_event_conf('eif-bari',_event)

)
).

278 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

2. The configuration files, in our example, eif-weimar and eif-bari, must reside in
the active rulebase’s TEC_RULES directory. Figure 7-2 is an example of one
of them.

Figure 7-2 Forwarding configuration file for one host

Note that we increased the default cache (BufEvtMaxSize) from 64 k to 1000
k or 1 Mb to give more resilience should the EIF probe not be available.

The command to put them in the EventServer target directory is:

wrb -imptgtdata eif-bari.conf EventServer residency_rb

3. Import the rule with:

wrb -imprbrule forward.rls residency_rb

4. Ensure that the forwarding rule is first in the list of rule_sets_Eventserver:

wrb -imptgtrule forward -before cleanup Eventserver residency_rb

Figure 7-3 rule_sets_EventServer file

5. Compile the rulebase with:

wrb -comprules residency_rb

6. Load the rulebase with:

wrb -loadrb residency_rb

ServerLocation=bari
ServerPort=9999

EventMaxSize=4096
NO_UTF8_CONVERSION=YES

BufEvtMaxSize=1000
BufEvtPath=$TIVOLIHOME/tec/tecad_logfile_bari.cache

rule_set: forward
rule_set: cleanup
rule_set: lab
rule_set: netview
rule_set: omegamon
data: eif-bari.conf
data: eif-weimar.conf

 Chapter 7. Configuring the event sources 279

7. Restart the eventserver:

wstopevsr;wstartevsr

8. Check that events are now received both in the TEC database and in the
ObjectServer database.

7.2 Integration between Netcool/OMNIbus and Tivoli
NetView

Tivoli NetView can be configured to send events directly to Netcool/OMNIbus
without using Tivoli Enterprise Console as an intermediate event collector. This
section describes how to enable this configuration.

Note: You will now have the same events in both TEC and OMNIbus. The
main intention for this method is to assist the development and testing
process. Before you go into production be sure to either turn this off or handle
the parallel events accordingly. Particular attention should be paid to any
automations or rules that send off automatic actions or alerts and e-mails, as
you do not want duplicates of these.

280 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7.2.1 Netcool/OMNIbus 7.2 and Tivoli NetView integration overview

Figure 7-4 shows an integration scenario between Netcool/OMNIbus and Tivoli
NetView.

Figure 7-4 Netcool/OMNIbus and NetView integration

In this architecture, Netcool/OMNIbus is the event management focal point for
the entire infrastructure, collecting alerts from sources such asTivoli Network
Manager IP Edition, Syslog Probe, Windows NT Event Log Probe, and so on.
The standard interfaces for event synchronization are delivered out of the box,
with predefined automation rules for handling several update and
synchronization scenarios.

The integration of the two products can be achieved through the following steps:

1. Tivoli EIF Probe installation
2. Configuring OMNIbus ObjectServer
3. NetView Tivoli Enterprise Console adapter configuration
4. Configuration of the correlation behavior

 Chapter 7. Configuring the event sources 281

7.2.2 Installing Netcool/OMNIbus probe for Tivoli EIF

The Netcool/OMNIbus probe for Tivoli EIF is a prerequisite for the integration
between Tivoli Enterprise Console and Netcool/OMNIbus, as it is to the
integration between Netcool/OMNIbus and IBM Tivoli Monitoring.

7.2.3 Configuring OMNIbus ObjectServer

In this step you configure the OMNIbus ObjectServer to receive the event
information forwarded by NetView and display them in the OMNIbus console.

In this section we describe the UNIX procedure to customize the integration.

Updating OMNIbus ObjectServer schema
Additions to the Netcool/OMNIbus database schema are needed to reflect the
information being sent to Netcool/OMNIbus from NetView. These modifications
are read from SQL. The command to configure OMNIbus pipes the SQL
command set into the SQL command-line tool and performs the updates to the
ObjectServer.

Update the ObjectServer database with the new NetView attributes with the
following commands:

$OMNIHOME/bin/nco_sql -user <username> -password <password> -server
<server_name> < <path_to_file>/tec_db_update.sql

Where:

$OMNIHOME The system-defined variable defining the install location of
OMNIbus

<username> OMNIbus ObjectServer user name

<password> OMNIbus ObjectServer password

<path_to_file> Fully qualified path to specified SQL file

Note: The Netcool suite also includes the NetView probe for the integration
between OMNIbus and Tivoli NetView, but we suggest adopting the strategy
described below as the best practice.

Note: If you have already executed this command before, this process might
results in some duplicate column error messages. Ignore these messages.

282 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7.2.4 Configuring the Tivoli EIF probe

This step configures the probe with the rules for mapping situation events to
OMNIbus events. Configuring the mapping involves updating the tivoli_eif.rules
file installed with the probe. In fact, we have to enable the probe to correctly
tokenize the TEC and NetView events information into ObjectServer attributes in
order to generate understandable events. You must restart the probe after you
update the file.

To update the rules file, update the following file:

$OMNIHOME/probes/<os_dir>/tivoli_eif.rules

Where:

$OMNIHOME System-defined variable defining the install location of
OMNIbus

<os_dir> Operating system specific, for example, aix5

Delete the content of your existing tivoli_eif.rules file and replace it with the
content displayed in “ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC,
NetView)” on page 382.

This rule file has been developed and tested in our lab environment, and it
ensures that events coming from both TEC and NetView are correctly managed
in OMNIbus.

7.2.5 Configuring the NetView TEC adapter to send to the EIF probe

On the NetView server run the following to change the /usr/OV/conf/tecint.conf
(UNIX) or \usr\ov\conf\tecad_nv6k.conf (Windows) adapter configuration file.
This step is required to enable the TEC adapter to send events to the Tivoli EIF
Probe instead of TEC.

� On UNIX:

/usr/OV/bin/tecits_upgrade -s <servername> -p <port>

� On AIX via:

smit nv6000>Configure>Configure Event Forwarding to TEC>

� On Windows:

\usr\OV\bin\tec_config.bat

Attention: We recommend creating a backup copy of the current
tivoli_eif.rules file before going through the next steps.

 Chapter 7. Configuring the event sources 283

Where:

<servername> Host name of system hosting the EIF probe
<port> Port the EIF probe listens on (default 9999)

On NetView 7.1.4 and earlier versions it may be necessary to restart the adapter
with the following commands:

/usr/OV/bin/nvtecia -stop
/usr/OV/bin/nvtecia -reload

Send some test events to confirm the connectivity, for example:

/usr/OV/bin/event -e NDWN_EV -h keyworth
/usr/OV/bin/event -e IDWN_EV -h 9.3.15.210

7.2.6 Automatic event management customization

As soon as the NetView and OMNIbus integration procedure is complete, the
first thing to do is replicate some event management tasks that are performed in
NetView through the netview.rls TEC rule. For example, the
node_correlate_interface TEC rule runs upon receipt of a
TEC_ITS_NODE_STATUS event with nodestatus equal to DOWN, MARGINAL
or UNREACHABLE. When this event is received, the event cache is searched for
any TEC_ITS_INTERFACE_STATUS events for the same host with status equal
to DOWN, ADMIN_DOWN, or UNREACHABLE. If any such effect events are
found, they are correlated using the link_effect_to_cause predicate, downgraded
to HARMLESS, and closed.

This rule is useful because it helps reduce the noise of critical interface down
events that are due to the fact that a node in the network is down. Its default
behavior can be also defined in Netcool/OMNIbus ObjectServer. To simplify this
example, we limited the scope to interface down and node down events. It is
plain to see that there are just little modifications to do to manage the
MARGINAL and UNREACHABLE cases.

284 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In OMNIbus terminology, the algorithm performed by the rule is like Figure 7-5.

Figure 7-5 Algorithm for node_correlate_interface rule

Given the algorithm, it has to be translated in SQL syntax.

In our example, we define node_corr_new temporal triggers that fire every 5
seconds, correlating interface down and node down events coming from the
same host.

 Chapter 7. Configuring the event sources 285

Figure 7-6 shows the Action tab of this trigger.

Figure 7-6 node_corr_new trigger

At this point we have translated the TEC rule into an OMNIbus trigger with just a
little effort.

286 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The result of this is that the interface down alarms are successfully cleared if the
ObjectServer contains a node down event caused by the same network node.
See Figure 7-7.

Figure 7-7 Successful correlation of node down and interface down events

The marginal and unreachable cases can be managed in almost the same way,
simply by changing the filtering clause in the trigger Action tab.

Tivoli NetView event correlation behavior can be further refined. In fact, we may
want to clear the interface down event also in the case when the malfunctioning
node or router comes up again.

 Chapter 7. Configuring the event sources 287

Figure 7-8 shows the sequence of actions that we would like to perform.

Figure 7-8 Algorithm for advanced interface down - node up and router up correlation

288 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The temporal trigger that corresponds to this algorithm is shown in Figure 7-9.

Figure 7-9 interface_correlate_nodeup trigger

 Chapter 7. Configuring the event sources 289

The result of this is that the interface down alarms are successfully cleared if the
ObjectServer contains a node up or a router up event originated from the same
node in the network. See Figure 7-10.

Figure 7-10 Successful correlation of node up and interface down events

In a similar way as proposed by our examples, it is possible to translate every
NetView rule into OMNIbus automations.

Furthermore, this is a good example that can be applied to other event
correlation scenarios, and could also be applied to other occasions where
multiple events come from the same host from a number of sources. For
example, we could include ITM events also.

7.3 Integration between Netcool/OMNIbus and IBM
Tivoli Monitoring

In this section we describe step by step how to implement the integration
between IBM Tivoli Monitoring 6.2 and Netcool/OMNIbus 7.2 in order to be able
to send ITM events directly to OMNIbus without using Tivoli Enterprise Console
as an intermediate event collector.

290 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7.3.1 Netcool/OMNIbus 7.2 and IBM Tivoli Monitoring 6.2 integration

Figure 7-11 shows an integration scenario between Netcool/OMNIbus and IBM
Tivoli Monitoring.

Figure 7-11 Netcool/OMNIbus and ITM integration

In this architecture, Netcool/OMNIbus is the event management focal point for
the entire infrastructure, collecting alerts from sources such as Tivoli Network
Manager IP Edition, syslog probe, and Windows NT Event Log Probe. The
standard interfaces for event synchronization are delivered with the media for
IBM Tivoli Monitoring Version 6.2, with predefined automation rules for handling
several update and synchronization scenarios.

The integration of the two products can be achieved through the following steps:

1. Netcool/OMNIbus probe for Tivoli EIF (EIF Probe) installation
2. Event synchronization installation
3. Configuring OMNIbus server
4. Configuring Tivoli Event Integration Facility (EIF) Interface

 Chapter 7. Configuring the event sources 291

7.3.2 Installing Netcool/OMNIbus probe for Tivoli EIF

The Netcool/OMNIbus Probe for Tivoli EIF is a prerequisite for the integration
between Tivoli Enterprise Console and Netcool/OMNIbus, as it is to the
integration between Netcool/OMNIbus and IBM Tivoli Monitoring. This was
covered in Chapter 4, “Upgrade strategies” on page 147.

7.3.3 Installing event synchronization

In our test environment, the EIF probe and Netcool/OMNIbus are installed on a
machine running the Red Hat 4.0 operating system. The event synchronization
component will be installed on the same machine.

The installation program for the event synchronization component can be found
in the TEC folder of IBM Tivoli Monitoring 6.2 installation media.

The installation steps are:

1. Run ESync2000Linux.bin to initialize the installation wizard.

Note: ESync2000<xxx>.bin is the executable name, where xxx indicates
the appropriate operating system.

Note: There are two other ways to install event synchronization: from the
command line and the command line using a silent install mode.

292 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

The first window is shown in Figure 7-12:

Figure 7-12 Initializing Event Synchronization installation wizard

 Chapter 7. Configuring the event sources 293

2. Click Next to continue the installation process. See Figure 7-13.

Figure 7-13 Installation of Netcool/OMNIbus not determined

294 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

3. Click Next to continue the installation process. Figure 7-14 shows the
Welcome window.

Figure 7-14 Welcome to the InstallShield wizard

 Chapter 7. Configuring the event sources 295

4. Accept the software license agreements. Click the option that is shown in
Figure 7-15.

Figure 7-15 Software license agreement acceptance

296 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5. Enter the installation directory path. See the Figure 7-16 with the default
value.

Figure 7-16 Installation directory prompt

 Chapter 7. Configuring the event sources 297

6. Customize the required parameters. Configuration can be changed at a later
time after installation. See Figure 7-17 for the default values.

Figure 7-17 Configuration parameters - part 1

298 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7. Continue configuring parameters. See Figure 7-18 for the other parameters.

Figure 7-18 Configuration parameters - part 2

 Chapter 7. Configuring the event sources 299

8. You are prompted for Tivoli Enterprise Monitoring Server (TEMS) connection
parameters. See Figure 7-19.

Figure 7-19 Tivoli Enterprise Monitoring Server information input

300 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

9. Enter the appropriate host name, user ID, and password. Confirm the
information in the configuration screen. Figure 7-20 shows sample contents.

Figure 7-20 Tivoli Enterprise Monitoring Server information confirmation

 Chapter 7. Configuring the event sources 301

10.Figure 7-21 shows two options:

– Automatically install rulebases and classes.
– Manually install rules and classes.

Choose Automatically install rule bases and classes. This screen is
related to the Tivoli Enterprise Console configuration only, so you can skip
this section.

Figure 7-21 Rules and classes for Tivoli Enterprise Console configuration

Note: As this screen comes with a beta installation, we have installed a
beta code of IBM Tivoli Monitoring 6.2 and will therefore be removed in the
GA version.

302 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

11.The next window shows the installation summary information. Figure 7-22
shows the directory and disk space that was set up.

Figure 7-22 Installation directory and disk space required

 Chapter 7. Configuring the event sources 303

12.Installation process starts and completion percentage is displayed. See
Figure 7-23.

Figure 7-23 Installation completion percentage

304 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

13.Wait for the installation process to finish, as shown in Figure 7-24.

Figure 7-24 Installation progress

14.The installation process ends, as shown in Figure 7-25.

Figure 7-25 Installation process has finished successfully

 Chapter 7. Configuring the event sources 305

7.3.4 Configuring the OMNIbus server

In this step you configure the OMNIbus ObjectServer to receive and map the
situation event information forwarded by a monitoring server and to reflect the
events to the OMNIbus console. You also configure the OMNIbus server to send
event synchronization information back to the originating monitoring server and
configure the EIF probe to map the situation event attributes to OMNIbus event
attributes.

In this section we describe the UNIX procedure to customize the integration. For
the Windows configuration, see the procedure in the IBM Tivoli Monitoring
Installation Guide.

Configuring the OMNIbus server for program execution from
scripts
To run the event synchronization program from SQL automation scripts for
sending sychronization events to ITM, the OMNIbus server must be running
under the process agent and the properties PA.Username and PA.Password
must be set in the $OMNIHOME/etc/NCOMS.props file, where $OMNIHOME is
the system-defined variable defining the installation location of OMNIbus.

By default, the process agent grants access to the members of the default group
ncoadmin. For default configuration, create a ncoadmin group and add root as a
user to this group. The PA.Username property must be set to the username for
connecting to the process agent agent. On UNIX, the default value is root. The
PA.Password property must be set to the password for the user connecting to
the process agent agent. For the default setting, specify the password of the root
user.

Updating the OMNIbus db schema
The command to configure OMNIbus pipes the SQL command set into the SQL
command-line tool and performs the updates to the ObjectServer.

Update the ObjectServer database fields in order to support ITM attributes and
ITM event management. Issue the following commands:

$OMNIHOME/bin/nco_sql -user <username> -password <password> -server
<server_name> < <path_to_file>/itm_db_update.sql
$OMNIHOME/bin/nco_sql -user <username> -password <password> -server
<server_name> < <path_to_file>/itm_proc.sql
$OMNIHOME/bin/nco_sql -user <username> -password <password> -server
<server_name> < <path_to_file>/itm_sync.sql

306 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Where:

$OMNIHOME Is the system-defined variable defining the install location
of OMNIbus

<username> Is the OMNIbus ObjectServer user name

<password> Is the OMNIbus ObjectServer password

<path_to_file> Is the fully qualified path to specified SQL file

Note that the original procedure described in a beta IBM Tivoli Monitoring
Installation Guide instructs us to run the itm_proc.sql before itm_db_update.sql,
but as some tables are required to run the procedure tasks, the correct order is
update the database, run procedure tasks, and then do the synchronization task.

Configuring the Tivoli EIF probe
This step configures the probe with the rules for mapping situation events to
OMNIbus events. Configuring the mapping involves updating the tivoli_eif.rules
file installed with the probe. In fact, we have to enable the probe to correctly
tokenize the TEC, NetView, and ITM events information into ObjectServer
attributes in order to generate understandable events. You must restart the
probe after you update the file.

To update the rules file:

1. Update the following file:

$OMNIHOME/probes/<os_dir>/tivoli_eif.rules

Where:

$OMNIHOME System-defined variable defining the install location of
OMNIbus

<os_dir> Operating system, such as Windows or AIX

Delete the content of your existing tivoli_eif.rules file and replace it with the
content displayed in “ObjectServer WEIMAR probe nco_p_tivoli_eif rules
(TEC, NetView, ITM)” on page 388.

This rule file has been developed and tested in our lab environment, and it
ensures that all events coming from TEC, NetView, and ITM are correctly
managed in OMNIbus.

2. Force the probe to read the new rules file.

Attention: We recommend creating a backup copy of the current
tivoli_eif.rules file before going through the next steps.

 Chapter 7. Configuring the event sources 307

On UNIX, issue the following command from command line:

kill -HUP <pid>

Where <pid> is the probe process ID.

Configuring error event flow to OMNIbus (optional)
To send error events to the OMNIbus system when errors are detected in the
event synchronization process, update the values for the following parameters in
the <eventsync_install>/omnibus/errorevent.conf file:

ServerName
ServerPort

Where:

<eventsync_install> The location where the event synchronization program is
installed (On Windows the default install directory is
C:\Program Files\IBM\SitForwarder, and on Linux and
UNIX operating systems the default is
/opt/IBM/SitForwarder.)

ServerName The name of the machine where the EIF probe is running.

ServerPort The listening port for the EIF probe. The default value is
9999.

Customizing the OMNIbus configuration
The procedure get_config_parms in the
<event_sync_install_dir>/omnibus/itm_proc.sql file defines three configuration
parameters:

set sit_ack_expired_def_action = ’REJECT’
set sit_resurface_def_action = ’ACCEPT’
set situpdate_conf_file = ’situpdate.conf’

The variable sit_ack_expired_def_action defines the action to be taken for an
event by the OMNIbus server when acknowledgement expiration information is
received for an event from a monitoring server. The default action is to reject the
request. OMNIbus sends information to change the state of the event to
acknowledge back to the monitoring server. If you would like to change the
action taken by the OMNIbus server to accept the acknowledgement expiration,
modify the statement to set sit_ack_expired_def_action = ’ACCEPT’.

The variable sit_resurface_def_action defines the action to be taken by the
OMNIbus server when a situation event has resurfaced. The default action of the
OMNIbus server is to accept this request and deacknowledge the event. If you
would like to change the action taken by the OMNIbus server to reject the

308 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

resurface of the event, modify the statement to set sit_resurface_def_action =
’REJECT’. OMNIbus then sends information back to the monitoring server to
change the state of the event back to acknowledge.

The variable situpdate_conf_file specifies the name of the configuration file to be
used by the SitUpdate forwarder. If you would like to change the name of the
configuration file, modify the statement to set situpdate_conf_file =
’newname.conf’.

After modifying itm_proc.sql, issue the following command (for UNIX):

$OMNIHOME/bin/nco_sql -user <username> -password <password> -server
<server_name> < <path_to_file>/itm_proc.sql

Situation Update Forwarder
The Situation Update Forwarder is the Web service based Java process that is
used to communicate with the TEMS from Netcool/OMNIbus.

The configuration files for the Situation Update Forwarder are located in
/opt/IBM/SitForwarder/ by default on a Linux configuration and has the content
shown in Example 7-1.

Example 7-1 /opt/IBM/SitForwarder/etc directory

pwd
/opt/IBM/SitForwarder/etc
ls -la
total 32
drwxrwxrwx 2 root root 4096 Sep 28 18:47 .
drwxrwxrwx 12 netcool ncoadmin 4096 Sep 28 18:02 ..
-rw-r--r-- 1 root root 652 Sep 28 18:14
server2.itsc.austin.ibm.com.pwd
-rwxrwxrwx 1 root root 27 Sep 5 23:29 sit_timeouts.conf
-rwxrwxrwx 1 root root 166 Sep 28 18:19 situpdate.conf
-rwxrwxrwx 1 root root 25 Sep 28 15:54 situpdate.properties
-rwxrwxrwx 1 root root 121 Sep 28 18:33 situser.conf
-rw-r--r-- 1 root root 125 Sep 28 18:14 situser.conf.1

The situpdate.conf file contains information about the configuration of the event
synchronization, as shown in Example 7-2.

Example 7-2 situpdate.conf file

fileSize=50000
fileNumber=10
fileLocation=/opt/IBM/SitForwarder/persistence

 Chapter 7. Configuring the event sources 309

pollingInterval=3
crcBytecount=50
cmsSoapUrl=cms/soap
bufferFlushRate=10
logLevel=verbose

The situser.conf file contains information about the user ID and password for
interaction with SOAP Web services, as shown in Example 7-3.

Example 7-3 situser.conf file

serverid=server2.itsc.austin.ibm.com
userid=root
passwordfile=/opt/IBM/SitForwarder/etc/server2.itsc.austin.ibm.com.pwd

These files must only be modified with the scripts provided with the Situation
Update Forwarder, and any changes require the Situation Update Forwarder to
be restarted.

Example 7-4 shows the content of the /optIBM/SitForwarder/bin directory.

Example 7-4 /opt/IBM/SitForwarder/bin

#ls -la
drwxrwxrwx 2 root root 4096 Sep 28 18:49 .
drwxrwxrwx 12 netcool ncoadmin 4096 Sep 28 18:02 ..
-rwxrwxrwx 1 root root 732 Sep 5 23:29 launch.sh
-rw------- 1 netcool ncoadmin 0 Sep 28 18:02 nohup.out
-rwxrwxrwx 1 root root 699 Sep 28 15:51 query_state.sh
-rw-r--r-- 1 netcool ncoadmin 2218 Sep 28 18:14 sitconfigsvruser.log
-rw-r--r-- 1 netcool ncoadmin 0 Sep 28 18:14
sitconfigsvruser.log.lck
-rwxrwxrwx 1 root root 531 Sep 5 23:29 sitconf.sh
-rwxrwxrwx 1 root root 538 Sep 5 23:29 sitconfuser.sh
-rwxrwxrwx 1 root root 21119 Sep 28 18:49 situpdate.sh
-rwxrwxrwx 1 root root 713 Sep 28 15:51 startSUF.sh
-rwxrwxrwx 1 root root 649 Sep 28 15:51 stopSUF.sh
-rwxrwxrwx 1 root root 697 Sep 28 15:51 test.000
-rwxrwxrwx 1 root root 699 Sep 28 15:51 test.sh

310 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7.3.5 Configuring the monitoring server

Before the monitoring server forwards any situation events to Netcool/OMNIbus,
you must enable event forwarding and define a default event destination.

You can configure the EIF probe and port information for the monitoring server
during installation. If you decide to configure after installation, use the following
steps to configure the hub monitoring server.

1. At the command line, change to the /opt/IBM/ITM/bin directory (or the
directory where you installed IBM Tivoli Monitoring).

2. Run the following command:

./itmcmd config -S -t tems_name

Where tems_name is the name of your monitoring server (for example,
HUB_itmdev17).

3. Follow the configuration steps until you reach this question:

Tivoli Event Integration Facility? [1=YES, 2=NO]

Complete the following additional steps:

� For the EIF server, type the host name of the TEC event server or the host
name of the Netcool/OMNIbus EIF probe and press Enter.

� For the EIF port, type the EIF reception port number for the TEC event server
or the Netcool/OMNIbus EIF probe and press Enter.

Example 7-5 shows a sample EIF configuration.

Example 7-5 EIF configuration

[root@server2][/opt/IBM/ITM/bin]-> ./itmcmd config -S -t HUB_TEMS
Configuring TEMS...

Hub or Remote [1=*LOCAL, 2=*REMOTE] (Default is: 1):
TEMS Host Name (Default is: server2):

Network Protocol 1 [ip, sna, ip.pipe or ip.spipe] (Default is: ip.pipe):

 Now choose the next protocol number from one of these:
 - ip
 - sna
 - ip.spipe

Note: If you will be configuring user security, you should use the root login ID
to configure.

 Chapter 7. Configuring the event sources 311

 - 0 for none
Network Protocol 2 (Default is: ip):

 Now choose the next protocol number from one of these:
 - sna
 - ip.spipe
 - 0 for none
Network Protocol 3(Default is: ip.spipe):
IP Port Number (Default is: 1918):
IP.PIPE Port Number (Default is: 1918):
Enter name of KDC_PARTITION (Default is: null):
Enter path and name of KDC_PARTITIONFILE (Default is:
/opt/IBM/ITM/tables/HUB_TEMS/partition.txt):
IP.SPIPE Port Number (Default is: 3660):

Configuration Auditing? [1=YES, 2=NO] (Default is: 1):
Hot Standby TEMS Host Name or type 0 for "none" (Default is: 0):
Enter Optional Primary Network Name or type 0 for "none" :(Default is: 0):
Security: Validate User ? [1=YES, 2=NO] (Default is: 1):
LDAP Security: Validate User with LDAP ? [1=YES, 2=NO](Default is: 2):

Tivoli Event Integration Facility? [1=YES, 2=NO] (Default is: 2): 1
EIF Server?(Default is: none): weimar
EIF Port? (Default is: 5529): 9999
Disable Workflow Policy/Tivoli Emitter Agent Event Forwarding? [1=YES, 2=NO]
(Default is: 2):
 ... Writing to database file for ms.

Hubs
CMS_Name
1 ip.pipe:HUB_TEMS[1918]

1)Add, 2)Remove ##, 3)Modify Hub ##, 4)UserAccess ##, 5)Cancel, 6)Save/exit: 6
... creating config file "/opt/IBM/ITM/config/server2_ms_HUB_TEMS.config"
... creating file "/opt/IBM/ITM/tables/HUB_TEMS/glb_site.txt."
... updating "/opt/IBM/ITM/config/kbbenv"
... verifying Hot Standby.
Info - Checking TEMS User Authentication requirements.
Info - OK, TEMS User Authentication requirements complete.
TEMS configuration completed...

Integrating the Netcool/OMNIbus events to Common Event
Console
In ITM 6.2, the Common Event Console can concentrate events from ITM itself,
TEC, and Netcool/OMNIbus in the same workspace. To achieve this target,
some customization has been made.

312 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

TEMS has a default ITM connector configuration, as you can see in Figure 7-26.

Figure 7-26 ITM connector configuration

 Chapter 7. Configuring the event sources 313

To configure the OMNIbus connector, select the respective folder, click New,
and fill in the parameters as shown in Figure 7-27.

Figure 7-27 OMNIbus connector configuration

The other parameters that are not shown above were left with the default values.

314 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Figure 7-28 shows a sample Common Event Console with three connectors:
ITM, TEC, and Netcool/OMNIbus.

Figure 7-28 Common Event Console

 Chapter 7. Configuring the event sources 315

One situation was create as an example to fire a disk space with the space
available percent less than 90. See Figure 7-29 for the basic configuration.

Figure 7-29 Situation configuration

316 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In the situation configuration, click the EIF folder to select the EIF receiver for the
situation alert. Figure 7-30 shows a Windows example.

Figure 7-30 EIF receivers

This example situation was fired to generate an event to Netcool/OMNIbus—an
alert where Alert Group with the ITM_Linux_Disk value was received on
Netcool/OMNIbus. Figure 7-31 shows the native Netcool/OMNIbus console.

Figure 7-31 Netcool/OMNIbus event list

 Chapter 7. Configuring the event sources 317

The user can acknowledge the event on the TEP workspace, as shown in
Figure 7-32.

Figure 7-32 Acknowledging event

Then the event is acknowledged in the TEP workspace, as shown in Figure 7-33.

Figure 7-33 Event acknowledged

318 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

In the Netcool/OMNIbus event list, we can see that event has been
acknowledged. See Figure 7-34.

Figure 7-34 Alert fields updated

 Chapter 7. Configuring the event sources 319

Figure 7-35 shows the acknowledged status from the Netcool/OMNIbus
connector interface.

Figure 7-35 Common Event Console

7.4 Deduplication configuration

During our testing we observed that after the installation of IBM Tivoli Monitoring
6.2 integration with Netcool/OMNIbus, the deduplication trigger automation
works in an unexpected way. We have requested that this behavior be changed.
However, we illustrate it below, as it serves as a good example. If, during your
automation development, you also observe this behavior, then you can make the
same changes.

Figure 7-36 shows the behavior of deduplication.

Figure 7-36 Deduplication automation unexpected behavior

As you can see, a node down event severity is correctly cleared whenever a
node up event comes in the ObjectServer, but its summary is not. Therefore, we
see a cleared event along with a node down summary.

320 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

This unexpected behavior can be easily fixed in the following way:

1. Access the Trigger menu in the Administrator panel.

2. Edit the deduplication trigger, adding the following lines in the section related
to ITM events:

if ((old.Severity = 0) and (new.Severity > 0)) then set
old.Severity = new.Severity;
end if;

The deduplication trigger should now look like Figure 7-37.

Figure 7-37 Edit Database Trigger

3. Click OK to save the updates to the trigger.

 Chapter 7. Configuring the event sources 321

The deduplication trigger will work correctly after this easy fix. The summary is
correctly updated and the count is increased by 1.

Figure 7-38 Deduplication now works correctly

7.5 Migrating the TEC Windows event log adapter

One of the most common customer scenarios involves collecting events from log
files related to applications, operating system, security, and so on. Most of the
time, when particular events are received in TEC, some actions are initiated on
the target machine to execute scripts that perform housekeeping tasks.

We replicated a sample of this scenario, installing a TEC Windows Event Log
Adapter on the Windows machine SALVADOR. The TEC adapter is successfully
up and running and sending events to Tivoli Enterprise Console.

In this section we explain how to achieve the same results using
Netcool/OMNIbus and the Multi-Headed NT Windows Event Log file probe (MH
NT), which has been identified as the best solution to collect events from a
Windows operating system.

Note: As with all database trigger edits, the change is dynamic, and the
impact can be monitored immediately.

322 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

At the end of the following tasks, we expect the Windows Event Log File installed
on SALVADOR to send events to the OMNIbus ObjectServer WEIMAR on the
WEIMAR machine. We also expect to be able to execute scripts and external
procedures on the Windows box.

After verification that events are correctly collected and managed with OMNIbus,
it will be possible to disable the TEC Windows Event Log Adapter from sending
events to TEC.

7.5.1 Installing and configuring the Windows NT Event Log probe

To be able to install the probe, a Netcool/OMNIbus installation is necessary on
the target machine. Execute the following steps to install OMNIbus and then the
MH NT Windows Event Log probe:

1. Unzip the OMNIbus installer software archive in a directory of your choice.
See Figure 7-39.

Figure 7-39 Unzip OMNIbus installer software archive

 Chapter 7. Configuring the event sources 323

2. Double-click setup.exe (Figure 7-40).

Figure 7-40 Double-click setup.exe

3. The Netcool installer welcome screen displays (Figure 7-41). Click Next to
continue.

Figure 7-41 Welcome screen for the Netcool installer

324 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4. Accept the license agreement and click Next (Figure 7-42).

Figure 7-42 The license agreement

 Chapter 7. Configuring the event sources 325

5. Enter the installation directory and click Next (Figure 7-43).

Figure 7-43 Enter the installation directory

6. Choose the components that you want to install. If you need to install only the
Netcool/OMNIbus MT NT Event Log Probe, select the following features:

– Process agent

– (Optionally) Desktop component to be able to configure the ObjectServer
to be used by the probe in GUI mode

If you also need to be able to execute external procedures and scripts on the
Windows machine, select the following features:

– Process agent
– Desktop
– Servers, to be able to configure an ObjectServer on SALVADOR
– Administrator, to manage the ObjectServer and the process agent

This difference is due to the fact that the ObjectServer WEIMAR installed on
the WEIMAR Red Hat box cannot be used to execute an external procedure
on SALVADOR (that is, a Windows machine).

326 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7. After you choose the components to install, click Next (Figure 7-44).

Figure 7-44 Selection of the features to install

 Chapter 7. Configuring the event sources 327

8. Review your installation settings and click Next (Figure 7-45).

Figure 7-45 Installation settings review

328 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

9. Wait for the installation process to finish (Figure 7-46).

Figure 7-46 Installation in progress

 Chapter 7. Configuring the event sources 329

10.The last panel informs you about the successful installation. Reboot the
system after clicking Finish (Figure 7-47).

Figure 7-47 Installation completed

11.To start the installation of the probe, open the zipped archive containing the
probe files (Figure 7-48).

Figure 7-48 Open the zipped archive that contains the probe files

330 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

12.Double-click the directory to open it (Figure 7-48 on page 330).

Figure 7-49 Open the unzipped directory that contains the probe files

13.Since we are installing the probe on OMNIbus 7.2, we need to use the files
contained in the post36 directory (Figure 7-50).

Figure 7-50 Open the post36 directory for an OMNIbus 7.2 installation

 Chapter 7. Configuring the event sources 331

14.Copy the two files nco_p_mhntlog.exe and nco_p_mhntlog.dll contained in
the post36 directory (Figure 7-51).

Figure 7-51 Copy the two files contained in the post36 directory

332 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

15.Paste them in the %OMNIHOME%\probes\win32 directory, where
%OMNIHOME% is the installation directory for Netcool/OMNIbus
(Figure 7-52).

Figure 7-52 Paste the files in the win32 directory

 Chapter 7. Configuring the event sources 333

16.Now return to the directory containing the configuration files for the probe:
mhntlog.hosts, mhntlog.props, and mhntlog.rules. See Figure 7-53.

Figure 7-53 Copy the configuration files for the probe

334 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

17.Finally, paste these files into the %OMNIHOME%\probes\win32 directory,
where %OMNIHOME% is the installation directory for Netcool/OMNIbus
(Figure 7-54).

Figure 7-54 Paste the files in the %OMNIHOME%\probes\win32 directory

18.The %OMNIHOME%\probes\win32 directory should now look like
Figure 7-55.

Figure 7-55 %OMNIHOME%\probes\win32 directory after the installation of the probe

 Chapter 7. Configuring the event sources 335

19.Now start the server editor (Figure 7-56).

Figure 7-56 Start the servers editor

20.In the Servers Editor window, replace the default NCOMS entries with the
ObjectServer that you want to send Windows log files events to, in this case
WEIMAR on host WEIMAR on port 4100 (Figure 7-57).

Figure 7-57 Servers editor entry for WEIMAR ObjectServer

336 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

21.Configure the properties for the probe. In particular, you want the probe to be
aware of the ObjectServer it has to send events to (in our case, WEIMAR).
Edit the mhntlog.props file in the %OMNIHOME%\probes\win32 directory in
the way shown in Example 7-6.

Example 7-6 mhntlog.rules file after configuration

###
#
Copyright (C) 2005 Micromuse Ltd. All rights reserved.
All Rights Reserved
#
RESTRICTED RIGHTS:
#
This file may have been supplied under a license.
It may be used, disclosed, and/or copied only as permitted
under such license agreement. Any copy must contain the
above copyright notice and this restricted rights notice.
Use, copying, and/or disclosure of the file is strictly
prohibited unless otherwise provided in the license agreement.
#
###

###
#
Property Name Default
#
Generic Properties
#
AuthPassword : ""
AuthUserName : ""
AutoSAF : 0
BufferSize : 10
Buffering : 0
Help : 0
LookupTableMode : 3
Manager : "mhntlog"
MaxLogFileSize : 1048576
MaxRawFileSize : -1
MaxSAFFileSize : 1048576
MessageLevel : "warn"
MessageLog : "%OMNIHOME%\\log\\mhntlog.log"
MsgDailyLog : 0
MsgTimeLog : "0000"
Name : "mhntlog"

 Chapter 7. Configuring the event sources 337

NetworkTimeout : 0
PollServer : 0
PropsFile :
"%OMNIHOME%\\probes\\nt351\\mhntlog.props"
RawCapture : 0
RawCaptureFile : "%OMNIHOME%\\var\\mhntlog.cap"
RawCaptureFileAppend : 0
RawCaptureFileBackup : 0
RetryConnectionCount : 15
RetryConnectionTimeOut : 30
RulesFile :
"%OMNIHOME%\\probes\\nt351\\mhntlog.rules"
SAFFileName : ""
Server : "NCOMS"
ServerBackup : ""
StoreAndForward : 1
Version : 0
#
Specific Properties
#
Cleanstart : 0
HostFile : "$OMNIHOME/probes/<arch>/mhntlog.hosts"
NoNameResolution : 0
PollTime: 1
ReadFileInterval : 3
RecoveryFile : "$OMNIHOME/probes/<arch>/mhntlog.reco"
Replay : 0
#
###

###
#
Add your settings here
#
###
Server : "WEIMAR"

22.Finally, specify in the mhntlog.hosts file the host that you want to monitor and
the kind of monitoring that you want to apply. The format for this configuration
file is:

HOST_INFO=<hostname>:MAX_RETRIES=<max
retries>:RETRY_INTERVAL=<retry interval>:LOG_FILES=<log file
name>,<log file name> etc.:PROBE_STATUS=<status>

338 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

We want to monitor the localhost (SALVADOR) security, application, and system
log files. The maximum number of retries can be conveniently set to 3, and the
time interval between each try can be set to 20 seconds. Edit the file as shown in
Example 7-7.

Example 7-7 mhntlog.hosts file after configuration

#
This is a sample host configuration file for use with the Multi-headed NT Event Log
probe.
In order to use it, uncomment the relevant lines and change the appropriate
parameters to conform to the specific confiuration required.
#
The host configuration file (the list of hosts and logs to monitor) must be written
in a specific format, described below.
#
Format for host configuration file

HOST_INFO=<hostname>:MAX_RETRIES=<max retries>:RETRY_INTERVAL=<retry
interval>:LOG_FILES=<log file name>,<log file name> etc.:PROBE_STATUS=<status>

Key:
<hostname> : host name (or IP address) of machine on which log
to be monitored resides
<max retries> : number of times to attempt to connect to host
<retry interval> : time (in seconds) to wait in between each connect
attempt
<log file name> : name of the log file to be monitored (eg.
Application)
<status> : ON or OFF - if set to OFF, the probe will not
monitor this host at all
#
Separators:
Colon (':') is the terminator for each individual entry.
Each log file to be monitored should be separated by a comma (,).
There should be NO spaces between any individual element and each option should
be separated from its value by an equals (=).
#
Comment lines are preceded by '#', blank lines are ignored.
Following is a sample 2 lines of an example list of hosts/logs to monitor...

HOST_INFO=examplehost:MAX_RETRIES=3:RETRY_INTERVAL=20:LOG_FILES=Application,System:PR
OBE_STATUS=ON

 Chapter 7. Configuring the event sources 339

HOST_INFO=192.168.34.60:MAX_RETRIES=3:RETRY_INTERVAL=20:LOG_FILES=Application,Dummy:P
ROBE_STATUS=ON

HOST_INFO=SALVADOR:MAX_RETRIES=3:RETRY_INTERVAL=20:LOG_FILES=Application,System,Secur
ity:PROBE_STATUS=ON

23.You can now start the probe from the command line, as suggested in
Example 7-8.

Example 7-8 Start the probe from the command line

C:\Program Files\ibm\tivoli\Netcool\omnibus\probes\win32>nco_p_mhntlog.exe
Netcool/OMNIbus MT NT Event Log Probe - Version 7.2
(C) Copyright IBM Corp. 1994, 2007

Information: Requested to execute in CONSOLE mode

If everything worked, you should see a green probe running an event in the
WEIMAR event list (Figure 7-58).

Figure 7-58 The event list shows that the probe has started successfully

7.5.2 Installing and configuring the process agent on Windows

As mentioned above, to enable external procedure execution on a target
machine it is necessary to have a process agent up and running on it. In the case
of a Windows machine, process agent cannot connect to an ObjectServer
running on a UNIX or Linux box.

In this scenario, therefore, the only solution consists of the installation of an
additional ObjectServer on a Windows machine.

340 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

After the installation of an ObjectServer on a Windows machine and the
configuration of process agent, we will be able to execute external procedures
and scripts on it.

The steps we went through to achieve this in our lab environment are the
following:

1. Install an ObjectServer called SALVADOR on your Windows machine,
executing the following from the DOS command line:

C:\Program Files\ibm\tivoli\Netcool\omnibus\bin>nco_dbinit -server
SALVADOR

2. Configure the properties file for the SALVADOR ObjectServer. It has to
connect to the process agent named SALVADOR_PA that will be started
later. Edit the salvador.props file in the way shown in Example 7-9.

Example 7-9 salvador.props file after configuration

###
#
Licensed Materials - Property of IBM
#
5724O4800
#
(C) Copyright IBM Corp. 1994, 2007. All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication
or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.
#
#
Ident: $Id: NCOMS.props 1.4 2003/06/17 09:38:14 stephenc Development $
#
###
#
AlertSecurityModel: 0 # INTEGER (Desktop security model)
AllowConnections: TRUE # BOOLEAN (Specifies whether or not non-root users can
connect)
AllowISQL: TRUE # BOOLEAN (Specifies whether or not isql connections are allowed)
AllowISQLWrite: TRUE # BOOLEAN (Specifies whether or not modifications by isql
connections are allowed)
AllowTimedRefresh: FALSE # BOOLEAN (Allow desktops to apply timed refresh)
Auto.Debug: FALSE # BOOLEAN (Automation debug)
Auto.Enabled: TRUE # BOOLEAN (Automation enable), "Automation
enable (default: %s)",
Auto.StatsInterval: 60 # INTEGER (Automation statistics interval)

 Chapter 7. Configuring the event sources 341

BackupObjectServer: FALSE # BOOLEAN (Backup ObjectServer)
Connections: 30 # INTEGER (Number of connections permitted)
DTMaxTopRows: 100 # INTEGER (Desktop maximum top rows)
DeleteLogFile: '$OMNIHOME/log/NCOMS_deletes_file.log' # STRING (Log file to record
all delete commands)
DeleteLogging: FALSE # BOOLEAN (Turn on the delete logging)
DeleteLogLevel: 0 # INTEGER (The level of detail sent to the log file)
DeleteLogSize: 1024# INTEGER (The maximum size of the log file)
GWDeduplication: 0 # INTEGER (Gateway deduplication mode)
Help: FALSE # BOOLEAN (Display help information.)
Granularity: 60 # INTEGER (Iduc update granularity)
Iduc.ListeningHostname: 'localhost' # STRING (Hostname to listen for Iduc
connections)
Iduc.ListeningPort: 0 # INTEGER (Iduc port to listen on)
Ipc.NumberConnections: 30 # INTEGER (Number of connections permitted)
Ipc.QueueSize: 1024 # INTEGER (Size of middleware internal server queues)
Ipc.ServerOverrideSybase: FALSE # BOOLEAN (Override the automatic SYBASE setting
(DEBUG only))
Ipc.SingleThreaded: FALSE # BOOLEAN (Single Threaded IPC)
Ipc.SSLCertificate: '$OMNIHOME/etc/NCOMS.crt' # STRING (SSL certificate)
Ipc.SSLEnable: FALSE # BOOLEAN (Enable SSL)
Ipc.SSLPrivateKeyPassword: '' # STRING (Private key password)
Ipc.StackSize: 67584 # INTEGER (Size of middleware internal server thread stacks)
Ipc.TruncateVendorLogFile: TRUE # BOOLEAN (Truncate vendor log file on start up)
Ipc.VendorLogFileSize: 1024 # INTEGER (Maximum size of middleware vendor's log file
(kB))
MaxLogFileSize: 1024 # INTEGER (Maximum log file size in kbytes.)
Memstore.DataDirectory: '$OMNIHOME/db' # STRING (Memory storage directory)
MessageLevel: 'warn' # STRING (Message reporting level)
MessageLog: '$OMNIHOME/log/NCOMS.log' # STRING (Path to the message log file.)
Name: 'NCOMS' # STRING (Server name)
NoProbeParser: FALSE # BOOLEAN (Disable the ObjectServer's fast probe parser)
PA.Name: 'NCO_PA' # STRING (Name of process agent)
PA.Password: '' # STRING (Password to use when connecting to the process agent)
PA.Username: 'root' # STRING (Username to use when connecting to the process agent)
PAAware: 0 # INTEGER ()
PaAwareName: '' # STRING ()
PasswordEncryption: 'DES' # STRING (The encryption scheme to use for users
passwords. DES or AES)
PasswordFormat: '8:1:1:0' # STRING (The password restriction
format.[<min_len>:<alpha>:<digit>:<punct>])
Profile: FALSE # BOOLEAN (Enable profiling)
ProfileStatsInterval: 120 # INTEGER (Profiler statistics report interval)
Props.CheckNames: TRUE # BOOLEAN (Cause program to abort if any property is not
understood at the time it is read)

342 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

PropsFile: '$OMNIHOME/etc/NCOMS.props' # STRING (Path to gateways property file.)
Region.ProtectAll: FALSE # BOOLEAN (Make all regions write-protected)
RestrictionUpdateCheck: TRUE# BOOLEAN (Specifies whether or not users can update
events that will not appear in their view
RestrictProxySQL: FALSE # BOOLEAN (Restrict the set of SQL commands proxies can
submit)
Sec.AuditLevel: 'warn' # STRING (Security audit level)
Sec.AuditLog: 'stdout:' # STRING (Security audit trail)
Sec.UsePam: TRUE # BOOLEAN (Use Pluggable Authentication Modules)
SecureMode: FALSE # BOOLEAN (Secure authentication)
UniqueLog: FALSE # BOOLEAN (Make log file name unique (adds PID))
Version: FALSE # BOOLEAN (Display version information.)

AlertSecurityModel: 0
AllowConnections: TRUE
AllowISQL: TRUE
AllowISQLWrite: TRUE
AllowTimedRefresh: FALSE
Auto.Debug: FALSE
Auto.Enabled: TRUE
Auto.StatsInterval: 60
BackupObjectServer: FALSE
Connections: 30
DTMaxTopRows: 100
DeleteLogging: FALSE
DeleteLogLevel: 0
DeleteLogSize: 1024
GWDeduplication: 0
Granularity: 60
Iduc.ListeningPort: 0
Ipc.SSLCertificate: ''
Ipc.SSLEnable: FALSE
Ipc.SSLPrivateKeyPassword: ''
MaxLogFileSize: 1024
Memstore.DataDirectory: '$OMNIHOME/db'
MessageLevel: 'warn'
PA.Name: 'SALVADOR_PA'
PA.Password: ''
Profile: FALSE
ProfileStatsInterval: 60
RestrictPasswords: FALSE
RestrictProxySQL: FALSE
RestrictionUpdateCheck: TRUE
Sec.AuditLevel: 'warn'
UniqueLog: FALSE

 Chapter 7. Configuring the event sources 343

End of File

3. Open the Servers Editor utility as explained above.

4. Add the following entries in the Servers Editor window:

– ObjectServer SALVADOR on host SALVADOR and port 4600
– Process agent SALVADOR_PA on host SALVADOR and port 4500

The result of this is shown in Figure 7-59.

Figure 7-59 Servers editor entries for SALVADOR ObjectServer and process agent

5. Start the SALVADOR ObjectServer issuing the following from the command
line:

C:\Program Files\ibm\tivoli\Netcool\omnibus\bin>nco_objserv -name
SALVADOR
Netcool/OMNIbus Object Server - Version 7.2
(C) Copyright IBM Corp. 1994, 2007

Information: Requested to execute in CONSOLE mode

Server 'SALVADOR' initialised - entering RUN state.

344 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

6. Ensure that the ObjectServer is successfully reached by selecting it and
clicking Test in the servers editor (Figure 7-60).

Figure 7-60 Ensure that the SALVADOR ObjectServer is reached successfully

7. Start the SALVADOR_PA process agent in the following way:

C:\Program Files\ibm\tivoli\Netcool\omnibus\bin>nco_pa -name
SALVADOR_PA
Netcool/OMNIbus Process Agent - Version 7.2
(C) Copyright IBM Corp. 1994, 2007

Information: Requested to execute in CONSOLE mode

 Chapter 7. Configuring the event sources 345

8. To make sure that process agent is working correctly, we try to execute an
external procedure that starts the sample Windows Telephony service.
Before starting this test, Telephony service is not started.

Figure 7-61 Telephony Windows service is not started

9. Create a TelephonyServiceStart.bat file containing the instruction shown in
Figure 7-62.

Figure 7-62

The net start TapiSrv instruction is responsible for the start of the
Telephony Windows Service.

346 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

10.Open the Administrator panel.

Figure 7-63 Open Administrator window

 Chapter 7. Configuring the event sources 347

11.The Import Connection Wizard is displayed. It will enable us to import the
connection details for ObjectServers and process agents in a guided way.
Click Next.

Figure 7-64 Connection Import Wizard

348 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

12.Import the ObjectServer details as shown in Figure 7-65. Click Next.

Figure 7-65 Import ObjectServer connections

 Chapter 7. Configuring the event sources 349

13.Import process agent details as shown in Figure 7-66. Click Next.

Figure 7-66 Import process agent connections

350 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

14.The connection import process ends (Figure 7-67). Click Finish.

Figure 7-67 Connection import summary

 Chapter 7. Configuring the event sources 351

15.Click Hosts → SALVADOR → SALVADOR, SALVADOR:4600. Insert the
default username and password combination (root/””) to log in to the
SALVADOR ObjectServer on the SALVADOR Windows box (Figure 7-68).

Figure 7-68 Log in to SALVADOR ObjectServer

352 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

16.Navigate to Automation → Procedures. Right-click in the empty grey space
on the right and select Add external procedure (Figure 7-69).

Figure 7-69 Select Add External Procedure

17.Give the telephony_service name to the external procedure, and in the
Executable field enter the path to the TelephonyServiceStart.bat file created
in step 8:

C:\\Documents and
Settings\\Administrator\\Desktop\\TelephonyServiceStart.bat.

 Chapter 7. Configuring the event sources 353

You can also use the Browse button to choose directly the file (Figure 7-70).

Figure 7-70 Create procedure telephony_service

18.Navigate to System → SQL and insert the appropriate SQL instruction that
calls the telephony_service procedure:

execute procedure telephony_service

354 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

19.Click the Execute button to execute the SQL statement (Figure 7-71).

Figure 7-71 Write and execute the SQL statement that calls the procedure

 Chapter 7. Configuring the event sources 355

20.Check the Windows service and make sure that the Telephony service has
started (Figure 7-72).

Figure 7-72 Telephony Windows service is started

356 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

21.Check the event list for WEIMAR and you can see a purple event coming
from the MH NT event log probe, showing that the Telephony service has
started (Figure 7-73).

Figure 7-73 Event sent to WEIMAR by the MH NT event log probe

In the same way it is possible to execute any other external procedure or script
with OMNIbus and process agent on Windows.

7.6 Syslog probe event configuration

Here we show that it is possible to have TEC adapters and OMNIbus probes
concurrently reading from same syslog. We use named pipes, but the example
will work equally for flat logfile reading, too.

This could be useful for testing or during a phased implementation.

1. Install the syslog probe.

 Chapter 7. Configuring the event sources 357

2. Examine the existing entry in /etc/syslog.conf (the configuration file that
controls the output of the syslog daemon). Copy the line added by the Tivoli
TEC adapter and edit the entry to send messages to the named pipe that you
are going to create (in this example, /var/log/ncopipe). We chose to send
fewer messages, and so removed the warnings, notices, and information. The
configuration will look something like Figure 7-74.

Figure 7-74 /etc/syslog.conf

3. Create the named pipe with the command:

mknod /var/log/ncopipe p

Log anything (except mail) of level info or higher.
*.info;mail.none;authpriv.none;cron.none /var/log/messages
The authpriv file has restricted access.
authpriv.* /var/log/secure
Log all the mail messages in one place.
mail.* /var/log/maillog
Log cron stuff
cron.* /var/log/cron
Everybody gets emergency messages
*.emerg *
Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler
Save boot messages also to boot.log
local7.* /var/log/boot.log
Tivoli logfile adapter entry,
.emerg;.alert;*.crit;*.err;*.warning;*.notice;*.info
|/tmp/.tivoli/.tecad_logfile.fifo.bonn.itsc.austin.ibm.com.
End of logfile adapter entry,
Netcool syslog probe entry
.emerg;.alert;*.crit;*.err|/var/log/ncopipe
End of Netcool syslog entry

358 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

4. Edit the probe file’s properties file syslog.props, and add /var/log/ncopipe to
the FifoName field (this is empty by default), as in Figure 7-75.

Figure 7-75 /opt/netcool/omnibus/probes/linux2x86/syslog.props

5. Restart syslogd, or refresh the configuration without interrupting the service,
with:

kill -HUP pid of syslogd

6. Start or restart the probe to reread the properties file:

kill -9 PID (of nco_p_syslog)
/opt/netcool/omnibus/probes/nco_p_syslog &

7. Confirm that both TEC and OMNIbus receive the messages.

8. When the TEC adapter is no longer required, the Tivoli adapter entry can be
removed from the /etc/syslog.conf, the syslog daemon refreshed, and the
TEC adapter retired.

Note: There should be only one of FiFoName or Logfile name
uncommented. When the probe starts up, if it finds a FifoName entry, it
starts in FIFO mode.

##
#
Add your settings here
#
##
MessageLevel : "warn"
Server : "WEIMAR"
PeerHost : 'weimar'
Peerport : 4100
InactivityAlarmTime : 0
FifoName : "/var/log/ncopipe"
#Logfile : "/var/lof/ncolog"
##

 Chapter 7. Configuring the event sources 359

7.7 Completed upgrade

Figure 7-76 is the OMNIbus event list after we migrated all the event sources and
turned off the TEC forwarding rule. Remember that you can decide to keep the
TEC adapters in place (and just change their configuration) when they cannot be
replaced by OMNIbus probes.

Figure 7-76 The final picture!

360 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

7.8 Troubleshooting the event flow

The Netcool Administration Guide covers many troubleshooting hints and tips
about the health of the Netcool components. However, Table 7-1 provides a
useful comparison for troubleshooting the event flow and comparing it to the
equivalent TEC method where appropriate.

Table 7-1 Event flow troubleshooting

Question TEC OMNIbus

Has the event left the event
source?

Is the adapter or agent
running?

Is the probe or monitor
process running?
ps -ef|grep nco_p

Is the event formatted okay
or filtered out?
tec_logfile.fmt
tec_logfile.conf

Is the matched event
stream shown in the probe
logfile?
$OMNIHOME/log/<Probe
>.log

Check logfile. Turn on
debug on the adapter.

Turn on probe debug
logging. Either start the
probe with the properties
parameter MessageLevel :
debug or change the
debug level of a running
probe by sending a USR2
signal to the probe process
ID as follows:

> kill -USR2 <pid>
Each time that you issue
the command above the
message level is
decreased to increase
information.

Check whether the cache
file on the source host has
entries (for example,
tec_logfile.cache).

Check whether the cache
file on the probe source
has entries, for example,
$OMNIHOME/var/tivoli_eif
.cache.

Check that endpoint
framework
communications are okay,
or whether non-tme to the
next level are okay (that is,
gateway or server).

Check the
Netcool/OMNIbus
components with
$OMNIHOME/nco_ping.

 Chapter 7. Configuring the event sources 361

Check the route and port in
the config file (for example,
tecad_logfile.conf
/usr/OV/conf/tecint.conf
/TEMS/tec/om_tec.conf)

Check the probe config file,
for example,
$OMNIHOME/probes/aix5
/tivoli_eif.props.

Has the event arrived at
the gateway?

Is the gateway running or
the SCE gateway active?

Is the Netcool southbound
component, for example,
NCO_Proxy, or an event
centralizing ObjectServer
up and running and
receiving events?

Check whether the cache
on the gateway has entries
(for example,
tec_gateway_sce.cache
tec_gateway.cache)

Check NCO_Proxy or
ObjectServer logfiles.

Check communications to
the server. Look for firewall
blocked ports or framework
issues.

Check the
Netcool/OMNIbus
components with
$OMNIHOME/nco_ping.
Look for firewall blocked
ports.

Check the route and port in
the config file on the
gateway
tec_gateway.conf.

Check the NCO_Proxy
and ObjectServer
configuration parameters.

Is the probe connected to
the ObjectServer? To
make sure it is, do one of
the following options:
� Look at the

Connections view in
the Administrator panel
(nco_config from the
command line).

� Use ObjectServer SQL
(nco_sql from the
command line) and
issue the query “select
* from
catalog.connections”.

Question TEC OMNIbus

362 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Has the event arrived at
the server?

Is the TEC server running
correctly?
/tmp/tec_* logfiles

Is the ObjectServer up and
running? Check with
$OMNIHOME/nco_ping.
Try to log in with
$OMNIHOME/bin/nco_sql.
Check NCO_Proxy’s and
ObjectServer’s logfiles.

Is the database RIM okay
(for example, wrimtest)?

N/A

Is the server listening port
correct?
.tec_config
Check whether events
arrived in the reception log
(for example, wtdumprl).

Is the ObjectServer
running on the correct
defined port? Check
$OMNIBUS/bin/nco_xigen
.

Has the event been
processed?

Check the TEC server
configuration parameters.
wlsesvrcfg

Check the ObjectServer
configuration parameters
$OMNIBUS/etc/<name>.p
rops. Check
$OMNIBUS/bin/nco_xigen
.

Check that events have
been parsed correctly.
Load the correct baroc file.

Check the RAW capture
file of the probe turned on,
especially in the probe
configurations file. Check
the probe logfile turned on,
especially in debug mode.

Check the rules cache.
wtdumper

Check whether the cache
file on the probe source
has entries, for example,
$OMNIHOME/var/tivoli_eif
.cache.

Question TEC OMNIbus

 Chapter 7. Configuring the event sources 363

Trace the rules to see what
is firing

Check the RAW capture
file of the Probe turned on
in the Probe configurations
file. Check the Probe
logfile turned on in debug
mode.
Turn on ObjectServer
debug logfile mode and
check the ObjectServer
Trigger logfiles in
$OMNIHOME/log.

Is the event hidden? Check the console event
group views.
Check the console filters.

Check the active event lists
in the ObjectServer native
GUI and their configured
views and filters. If the
event can be seen with the
ObjectServer SQL
(nco_sql from the
command line) but not in
the event list, check filters
and restriction filters that
have been applied to the
user/group.

Question TEC OMNIbus

364 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Part 4 Appendixes

In Appendix A, “Lab configuration” on page 367, we provide some lab
configuration examples that may be helpful as references to follow in actual
upgrade scenarios.

In Appendix B, “Additional material” on page 399, we provide information about
how to access additional online materials that are available as part of this IBM
Redbooks publication.

Part 4

© Copyright IBM Corp. 2008. All rights reserved. 365

366 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Appendix A. Lab configuration

In this appendix we provide example content to better demonstrate various
installation and configuration steps. The appendix topics include:

� “TEC installation steps” on page 368

� “TEC event source generation commands and scripts” on page 372

� “Netcool/OMNIbus directory structure reference” on page 374

� “IBM Tivoli Netcool default port usage” on page 375

� “User profile” on page 377

� “Netcool Process Automation startup script” on page 377

� “ObjectServer WEIMAR_PA Process Automation configuration” on page 379

� “ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView)” on
page 382

� “ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView, ITM)” on
page 388

A

© Copyright IBM Corp. 2008. All rights reserved. 367

TEC installation steps

To install:

1. Host name resolution tables were set up in DNS with fully qualified host
names configured. On the TMR server we added a single entry to /etc/hosts
with the fully qualified and the short host name.

2. Framework 4.1.1 was installed and patched as the root user.

3. DB2 8.1 FP07 was installed with DB2 user db2inst1, group db2admin.

4. The framework RIM was configured as shown in Figure A-1.

Figure A-1 RIM configuration

RIM Host: nottingham
RDBMS User: db2inst1
RDBMS Vendor: DB2
Database ID: tec
Database Home: /usr/opt/db2_08_01
Server ID: tcpip
Instance Home: /home/db2inst1
Instance Name: db2inst1

368 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

5. TEC 3.9 was installed and patched to FP06 (Figure A-2).

Figure A-2 TMR server wlsinst output

6. TEC and framework operators created ops_uk, ops_br, ops_it, and ops_de.

7. TEC rules used initially are shown in Figure A-3.

Figure A-3 TEC rule sets

 Product List

Tivoli Management Framework 4.1.1
IBM Tivoli Enterprise Console Adapter Configuration Facility 3.9
IBM Tivoli Enterprise Console JRE 3.9
IBM Tivoli Enterprise Console Sample Event Information 3.9
IBM Tivoli Enterprise Console Console 3.9
IBM Tivoli Enterprise Console Server 3.9
IBM Tivoli Enterprise Console User Interface Server 3.9
--
 Patch List

3.9.0 Tivoli Enterprise Console ACF Fix Pack 6
3.9.0 Tivoli Enterprise Console Console Fix Pack 6
3.9.0 Tivoli Enterprise Console Sample Event Information Fix Pack 6)
3.9.0 Tivoli Enterprise Console JRE Fix Pack 6
3.9.0 Tivoli Enterprise Console Server Fix Pack 6
3.9.0 Tivoli Enterprise Console User Interface Server Fix Pack 6
Tivoli Framework Patch 4.1.1-LCF-0049 (build 04/12)
Tivoli Framework Patch 4.1.1-TMF-0090 (build 05/17)

 Appendix A. Lab configuration 369

8. TEC barocs, mainly the addition of ITM 5.1.1, ITM 6.1, and ITM 6.2 baroc
files. See Figure A-4.

Figure A-4 TEC BAROC files

9. The managed node and gateway were created on host
mondorf.itso.austin.ibm.com.

10.Endpoints were created on the TMR, gateway, and host
bonn.itso.austin.ibm.com.

11.The non-TME TEC adapter tecad_win was installed on Windows2003 server
salvador.itso.austin.ibm.com.

12.ACP adapter profiles were created as the default to send all events
(filtermode=out).

370 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

13.The Gateway_SCE profile was modified with additional lines, as shown in
Figure A-5.

Figure A-5 SCE configuration

14.ITM 6.1 and ITM 6.2 forwarding to TEC was set up on the systems
cairo.itso.austin.ibm.com and server2.itso.austin.ibm.com (the two hub ITM
TEMS systems). On both systems the file
/opt/IBM/ITM/tables/HUB_TEMS/TECLIB/om_tec.config was configured to
forward to the TEC server, as in Figure A-6.

Figure A-6 om_tec.config

Additionally, with ITM 6.2 there is a new feature to allow the forwarding of
events to more than one EIF receiver simultaneously, so that could be any
combination of TECs or Netcool EIF probes. It also allows specific ITM
situations to send to one EIF and others to another EIF. These destinations
are created with the ITM command:

tacmd createeventdest

#this variable points to the T/EC host where we forward events
ServerLocation=nottingham
ServerPort=0
#EventMaxSize=4096
RetryInterval=5
getport_total_timeout_usec=50500
NO_UTF8_CONVERSION=YES
ConnectionMode=co
BufferEvents=YES
BufEvtMaxSize=4096
BufEvtPath=./TECLIB/om_tec.cache
FilterMode=OUT
Filter:Class=ITM_Generic;master_reset_flag='';

 Appendix A. Lab configuration 371

For a full description of this command see the ITM6.2 Installation and
Deployment guide and ITM 6.2 Administration guides.

This produces a configuration file per EIF receiver, as in Figure A-7

Figure A-7 evtdst001.config

15.NetView to TEC forwarding was set up via /usr/OV/conf/tecint.conf.

Figure A-8 NetView-TEC forwarding configuration

16.Finally, all event sources were tested.

TEC event source generation commands and scripts

After setting up the TEC environment and the different event sources, a random
sample of genuine events and test scripts were allowed to flow into to TEC. We
then took a snapshot of this via the wtdumprl command. This resulted in 565
events being collected, which were then replayed again to create 1130 events.
The following commands were then used to replay the events in a controlled
manner:

cd $BINDIR/TME/TEC/contrib
wtdumprl|./ParseEvents.pl -d /Tivoli/parse1909
wtdbclear -left 0
./SendEvents.pl -d /Tivoli/parse1909 -t0

ServerLocation=nottingham
ServerPort=0
RetryInterval=5
getport_total_timeout_usec=50500
NO_UTF8_CONVERSION=YES
ConnectionMode=co
BufEvtMaxSize=4096
BufferEvents=YES
BufEvtPath=./TECLIB/evtdst001.cache

372 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

NB: -t0 sends all events immediately, -t1 gives a 1-second pause, and no -t flag
replays them at the original time interval.

Additionally, a script to run multiple copies of postzmsg was used. This particular
example sends 100 messages to the gateway receiver on the managed node. It
is worth noting that postzmsg is required, rather than postemsg, to be able to
select a port number, without the need for a configuration file.

Figure A-9 Script to send 100 postzmsgs to TEC

This script was used to direct messages to an OMNIbus EIF probe as well as a
TEC gateway or server component by changing the -S and -p flags, for example,
to send to an EIF probe (where bari is the ObjectServer and 9999 the listening
port).

Figure A-10 Script to send 100 postzmsgs to EIF probe

We also performed some limited, controlled stress tests, sending significant
event flows between the TEC and OMNIbus servers and direct from event
sources to OMNIbus. The events used were a mixture of genuine and simulated
events from the installed adapters, postzmsg commands, ITM, and NetView. The
results were discussed in Chapter 7, “Configuring the event sources” on
page 277.

#!/bin/ksh
COUNT=1
while [$COUNT -lt 101]
do
/Tivoli/lcf/bin/aix4-r1/bin/postzmsg -S mondorf -p 5539 -m
"sendevent $COUNT `date +%T`" -r CRITICAL hostname=bonn TEC_Error
LOGFILE
 COUNT=`expr $COUNT + 1`
done

#!/bin/ksh
COUNT=1
while [$COUNT -lt 101]
do
/Tivoli/lcf/bin/aix4-r1/bin/postzmsg -S bari -p 9999 -m "sendevent
$COUNT `date +%T`" -r CRITICAL hostname=bonn TEC_Error LOGFILE
 COUNT=`expr $COUNT + 1`
done

 Appendix A. Lab configuration 373

Netcool/OMNIbus directory structure reference

Figure A-11 shows the directory structure of the deployed Netcool/OMNIbus
environment in the default configuration.

Figure A-11 Netcool/OMNIbus directory structure

Tivoli Network
Management

install

uadesktop

common

7.2

user

qstartgd

common

admin

common

omnibus

relnotes

probegtwy

itmagent

uaadmin

probes

omn.dita (Generic topic with keywords and key phrases shared across the
probes, gateways, and 7.2 folders. 7.2 is OMNIbus Core; probes & gateways are
OMNIbus Integrations and are described elsewhere)

gateways

omn_coretext_reuse.dita (Combination central reuse topic with
text shared across all 7.2 folders)

omn_coreimages_reuse.dita (Generic central reuse topic
containing ALL images - inserted using <fig> or <image>, and
<alt>. DITA topics in the sibling folders will conref to these
images) STILL UNDER CONSIDERATION

omn_pre_accessibility.dita,
omn_pre_tivolitechnicaltraining.dita,
omn_pre_supportinformation.dita,
omn_pre_conventionsusedinthispubn.dita (Concept and
reference Preface/prelim topics. These topics are common to the
admin, install, probegtwy, and user folders)

omn_pdf.ditaval (Filter file with conditional text to include
revision bars and images, platform cue icons, and <xref> links
listed at the bottom of container topics - for PDF. Used in the
admin, install, probegtwy, and user folders) THIS COULD BE
COPIED TO A SIBLING FOLDER & RENAMED IF THAT
FOLDER REQUIRES ADDITIONAL CONDITIONAL TEXT

omn_ic.ditaval (Filter file with conditional text to include revision
bars, images, and platform cue icons, and exclude <xref> links
listed at the bottom of container topics - for info center. Used in
the admin, install, probegtwy, and user folders) THIS COULD
BE COPIED TO A SIBLING FOLDER & RENAMED IF THAT
FOLDER REQUIRES ADDITIONAL CONDITIONAL TEXT

omn_ua.ditaval (Filter file with conditional text to include
revision bars and platform cue icons, and exclude screen
captures in tasks and <xref> links listed at the bottom of
container topics - for online help. Used in the uadesktop and
uaadmin folders)

omn_core.ditacontrol (Style control file to set Tivoli brand style,
& control page breaks & ‘keep with next’ in PDFs)

ACCESSIBILITY FILE BASED ON ACCESSIBILITY TEMPLATE
??????

omn72_QuickStartGuide_EN.idd (IBMIDDoc Quick Start Guide
file)

netcool.dita (Generic topic with keywords and key phrases shared across all Netcool products or
offerings that reside at the same level as the omnibus folder) + README.txt

 boilerplate (Folder containing template files that can be copied, renamed, and
 customised by product. Folder contents include: front matter notices files (x2),
 preface/preliminary files (x8), back matter Notices file (x1), preface DITA map file (x1),
 legal PDF DITA map file (x1), filter files (x3), style control file (x1))boilerplate

374 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

IBM Tivoli Netcool default port usage

This list has been created to simplify a Netcool installation and to assist during
the deployment phase, help in order to avoid communication port conflicts, and
to get an overview of used ports by the current and commonly used Netcool
products.

IBM Tivoli Netcool/OMNIbus

Table A-1 shows default port usage of IBM Tivoli Netcool/OMNIbus used in our
lab environment.

Table A-1 Default port usage: OMNIbus

IBM Tivoli Netcool Security Manager

Table A-2 shows default port usage of IBM Tivoli Netcool Security Manager used
in our lab environment.

Table A-2 Default port usage: NSM

Component Default port Additional information/port configuration

ObjectServer
(NCOMS)

4100 These default port numbers are defined in the server editor,
but are configurable and rarely used with the default values.
Amend the port numbers as necessary, and then save your
changes, as described in Customizing Server Definitions
in the server editor.

On UNIX systems that do not have a graphical interface,
you can amend the port numbers by editing the
$NCHOME/etc/omni.dat file.

Process control agent
(NCO_PA)

4200

Gateway server 4300

Proxy server 4400

IDUC Variable value
(6969 - UDP)

The operating system supplies the port number for the Insert
Delete Update Control (IDUC) communication channel.

Component Default port Additional information/port configuration

Server port 1275 Security Manager Server port

Server DB port 5600 Security Manager database port

Server HTTP port 8077 Security Manager Web port

 Appendix A. Lab configuration 375

IBM Tivoli Netcool/Webtop

Table A-3 shows default port usage of IBM Tivoli Netcool/Webtop used in our lab
environment.

Table A-3 Default port usage: Netcool/Webtop

IBM Tivoli Netcool probes

Table A-4 shows default port usage of IBM Tivoli Netcool probes used in our lab
environment.

Table A-4 Default port usage: probes

Component Default port Additional information/port configuration

Netcool WebTop
WAAPI Secure

4433 The port number of the secure Netcool/Webtop server.
Webtop Administration Application Proram Interface
(WAAPI).

Netcool/Webtop 8080 The port number of the Netcool/Webtop server.

Component Default port Additional information/port configuration

nco_p_glf 5555 Communication port between master and subordinate

1122 Listening port

9999 Peer port

nco_p_syslog 5555 Communication port between master and subordinate

1122 Listening port

9999 Peer port

nco_p_nonnative No port No port

nco_p_tivoli_eif 5555 Communication between master and subordinate

9999 Listening port

9999 Peer port

376 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

User profile

Example A-1 shows the profile of the user Netcool as a reference of the lab
environment.

Example: A-1 AIX /home/netcool/.profile

more .profile

export
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:$HOME/bin:/opt/netcool/platform/aix5/jre_
1.5.4/jre/bin:/opt/netcool/bin:/opt/netcool/omnibus/bin:/usr/bin/X11:/sbin:/opt
/netcool
:/opt/netcool/omnibus:/opt/netcool/omnibus/probes:.
export NCHOME=/opt/netcool
export OMNIHOME=/opt/netcool/omnibus

export DISPLAY=`echo $SSH_CLIENT | awk '{print $1}'`:0.0
export PS1="\u@\H:\w$ "

if [-s "$MAIL"] # This is at Shell startup. In normal
then echo "$MAILMSG" # operation, the Shell checks
fi # periodically.

cd /opt/netcool

bash

Netcool Process Automation startup script

The rc.nco_pa startup script starts the Process Automation daemon
automatically after a system startup. Then the Process Automation daemon
starts all configured processes and services and controls the availability of them.

Example A-2 shows the “rc.nco_pa” startup script in the “/etc/inittab” file that we
used in our lab environment.

Example: A-2 AIX /etc/rc.nco_pa

#!/bin/bsh
Start the Netcool/OMNIbus Process Agent
#
Add Netcool related environment variables here
NCHOME=/opt/netcool
OMNIHOME=/opt/netcool/omnibus

 Appendix A. Lab configuration 377

End of Netcool environment variables
#

NCO_PA="BARI_PA"
START_NCO="Y"
SECURE=n
NETCOOL_LICENSE_FILE=27000@localhost
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/home/netcool/bin:/opt/netcool/platform/a
ix5/jre_1.5.4/jre/bin:/opt/netcool/bin:/opt/netcool/omnibus/bin:/sbin:/opt/netc
ool/omnibus/pro
bes:/usr/bin/X11:.

export NCHOME OMNIHOME NETCOOL_LICENSE_FILE PATH
case "$START_NCO" in
 'Y')
 if [-x $OMNIHOME/bin/nco_pad]; then
 grep ${NCO_PA} $NCHOME/etc/omni.dat >/dev/null
2>/dev/null
 if [$? -eq 0]; then
 echo "Netcool/OMNIbus startup : Starting
Process Control..."
 if [$SECURE = "Y"]; then
 $OMNIHOME/bin/nco_pad -name ${NCO_PA}
-secure -configfile $OMNIHOME/etc/BARI_PA.conf &
 else
 $OMNIHOME/bin/nco_pad -name ${NCO_PA}
-configfile $OMNIHOME/etc/BARI_PA.conf &
 fi
 else
 echo "Netcool/OMNIbus startup : Process
Control not configured"
 fi
 else
 echo "Netcool/OMNIbus startup : nco_pad not
executable"
 fi
 ;;
 'N')
 echo "Netcool/OMNIbus startup : Process Control not starting"
 ;;
 *)
 echo "Netcool/OMNIbus startup : START_NCO incorrectly set"
 ;;
esac

END OF Netcool/OMNIbus ADDITIONS

378 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

ObjectServer WEIMAR_PA Process Automation
configuration

Example A-3 shows the properties file of the Process Automation called
“WEIMAR_PA” on the AIX lab system with host name “weimar”.

Example: A-3 $OMNIHOME/etc/WEIMAR_PA.conf

#NCO_PA3
#
Process Agent Daemon Configuration File 1.1
#
Ident: $Id: nco_pa.conf 1.3 2002/05/21 15:28:10 renate Development $
#

#
List of processes
#
nco_process 'MasterObjectServer'
{
 Command '$OMNIHOME/bin/nco_objserv -name WEIMAR -messagelevel debug
-pa WEIMAR_PA -propsfile $OMNIHOME/etc/WEIMAR.props' run as 501
 Host = 'weimar'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'SecurityManager'
{
 Command '$NCHOME/security/bin/ncsm_server' run as 501
 Host = 'weimar'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0

Note: The contents of the file shown in Example A-3 are included in the
additional materials downloadable file for this book. See Appendix B,
“Additional material” on page 399.

 Appendix A. Lab configuration 379

 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_tivoli_eif'
{
 Command '$OMNIHOME/probes/nco_p_tivoli_eif -propsfile
$OMNIHOME/probes/linux2x86/tivoli_eif.props' run as 501

 Host = 'weimar'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_syslog'
{
 Command '$OMNIHOME/probes/nco_p_syslog -propsfile
$OMNIHOME/probes/linux2x86/syslog.props' run as 501

 Host = 'weimar'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

nco_process 'nco_p_glf'
{
 Command '$OMNIHOME/probes/nco_p_glf -propsfile
$OMNIHOME/probes/linux2x86/glf.props' run as 501

 Host = 'weimar'
 Managed = True
 RestartMsg = '${NAME} running as ${EUID} has been restored
on ${HOST}.'
 AlertMsg = '${NAME} running as ${EUID} has died on
${HOST}.'
 RetryCount = 0
 ProcessType = PaPA_AWARE
}

380 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

#
List of Services
#
nco_service 'Core'
{
 ServiceType = Master
 ServiceStart = Auto
 process 'MasterObjectServer' NONE
 process 'SecurityManager' 5
 process 'nco_p_tivoli_eif' 5
 process 'nco_p_syslog' 5
 process 'nco_p_glf' 5
}

#
This service should be used to store processs that you want to temporarily
disable. Do not change the ServiceType or ServiceStart settings of this
process.
#
nco_service 'InactiveProcesses'
{
 ServiceType = Non-Master
 ServiceStart = Non-Auto
}

#
ROUTING TABLE
#
'user' - (optional) only required for secure mode PAD on target host
'user' must be member of UNIX group 'ncoadmin'
'password' - (optional) only required for secure mode PAD on target host
use nco_pa_crypt to encrypt.
nco_routing
{
 host 'weimar' 'WEIMAR_PA'
 host 'bari' 'BARI_PA'
 host 'salvador' 'SALVADOR_PA'
}

 Appendix A. Lab configuration 381

ObjectServer WEIMAR probe nco_p_tivoli_eif rules
(TEC, NetView)

Example A-4 shows the rules file of the ObjectServer WEIMAR probe
“nco_p_tivoli_eif” on the Red Hat lab system considering NetView and TEC.

Example: A-4 $OMNIHOME/probes/linux2x86/tivoli_eif.rules

--
--
-- Copyright (C) 1994 - 2006, Micromuse, Ltd. (an IBM Company)
-- All Rights Reserved
--
--
-- RESTRICTED RIGHTS:
--
-- This file may have been supplied under a license.
-- It may be used, disclosed, and/or copied only as permitted
-- under such license agreement. Any copy must contain the
-- above copyright notice and this restricted rights notice.
-- Use, copying, and/or disclosure of the file is strictly
-- prohibited unless otherwise provided in the license agreement.
--
-- Ident: Id
--
--
###
This rulesfile has been developed in accordance to the IBM Netcool
Rules Files Best Practices to perform the following functionality
#
1. De-duplicate events
2. Generic-Clear to correlate Problems/Resolutions
3. Readable alarm summaries
###
Available elements:
$ClassName - Class name of the TEC event
$EventSeqNo - Event sequence number of this event
All other elements are dynamically created, based on the name/value
pairs in the event.
###

Lookup table "status, severity, type"

Note: The contents of the file shown in Example A-4 are included in the
additional materials downloadable file for this book. See Appendix B,
“Additional material” on page 399.

382 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Lookup table valid for snmpstatus,nodestatus,servicestatus,
and routerstatus
table Status1 = {
 { "1", "1", "2" },
 { "2", "5", "1" },
 { "3", "3", "1" },
 { "4", "2", "1" },
 { "THRESHOLD_EXCEEDED", "1", "2" },
 { "REARMED", "5", "1" },
 { "UP", "1", "2" },
 { "DOWN", "5", "1" },
 { "MARGINAL", "3", "1" },
 { "UNREACHABLE", "2", "1" },
}

Lookup table "status, severity, type"
Lookup table valid for reachability and isdnstatus
table Status2 = {
 { "1", "3", "1" },
 { "2", "1", "2" },
 { "UNREACHABLE", "3", "1" },
 { "REACHABLE_AGAIN", "1", "2" },
 { "ACTIVE", "3", "1" },
 { "DORMANT", "1", "2" },
}

Lookup table "status, severity, type"
Lookup table valid for ifstatus
table Status3 = {
 { "1", "1", "2" },
 { "2", "5", "1" },
 { "3", "1", "2" },
 { "4", "2", "1" },
 { "UP", "1", "2" },
 { "DOWN", "5", "1" },
 { "ADMIN_DOWN", "1", "2" },
 { "UNREACHABLE", "2", "1" },
}

Lookup table "status, severity, type"
Lookup table valid for pixfailstatus
table Status4 = {
 { "FAILOVER", "3", "1" },
 { "RECOVERED", "1", "2" },
}

array servers;

 Appendix A. Lab configuration 383

array server_info;
array server_detail;

if(match(@Manager, "ProbeWatch"))
{
 switch(@Summary)
 {
 case "Running ...":
 @Severity = 1
 @AlertGroup = "probestat"
 @Type = 2
 case "Going Down ...":
 @Severity = 5
 @AlertGroup = "probestat"
 @Type = 1
 default:
 @Severity = 1
 }
 @AlertKey = @Agent
 @Summary = @Agent + " probe on " + @Node + ": " + @Summary
}
else
{
 @Manager = "tivoli_eif probe on " + hostname()
 @AlertGroup = $ClassName
 @Class = 6601
 @Agent = $source
 @Type = 1
 @Grade = "1"

 if(exists($msg))
 {
 if(regmatch($msg, "^'.*'$"))
 {
 $msg = extract($msg, "^'(.*)'$")
 }
 }

 if(exists($date))
 {
 if(regmatch($date, "^'.*'$"))
 {
 $date = extract($date, "^'(.*)'$")
 }
 }

 if(exists($hostname))
 {
 @Identifier = $hostname

384 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 }

 if(exists($source))
 {
 @AlertKey = $source
 @Identifier = @Identifier + ":" + $source
 }

 if(exists($sub_source))
 {
 @AlertKey = @AlertKey + ":" + $sub_source
 @Identifier = @Identifier + ":" + $sub_source
 }

 if(exists($sub_origin))
 {
 @AlertKey = @AlertKey + ":" + $sub_origin
 @Identifier = @Identifier + ":" + $sub_origin
 }

 if(exists($severity))
 {
 switch ($severity)
 {
 case "FATAL" :
 @Severity = 5
 case "60":
 @Severity = 5
 case "CRITICAL":
 @Severity = 5
 case "50":
 @Severity = 5
 case "MINOR":
 @Severity = 3
 case "40":
 @Severity = 3
 case "WARNING":
 @Severity = 2
 case "30":
 @Severity = 2
 default:
 @Severity = 1
 }
 }

 if(exists($origin))
 {
 @Node = $origin
 @NodeAlias = $origin

 Appendix A. Lab configuration 385

 }

 @Identifier = @Identifier + ":" + $ClassName

 if(exists ($server_path))
 {
 $num_servers = split($server_path, servers, ",")
 $num_detail = split(servers[$num_servers], server_detail, "'")
 $num_info = split(server_detail[int($num_detail)-1],
server_info, " ")
 @TECServerHandle=server_info[2]
 @TECDateReception = server_info[3]
 @TECEventHandle=server_info[4]
 }

 @Summary = $msg
 @TECHostname = $hostname
 @TECFQHostname = $fqhostname
 @TECDate = $date
 @TECRepeatCount = $repeat_count
 @LastOccurrence = getdate
 @FirstOccurrence = getdate
 @TECStatus = $status

 #
 # Handle TEC event status
 #

 switch ($status)
 {
 CASE "CLOSED":
 @Type = 2
 @Severity = 0
 CASE "30":
 @Type = 2
 @Severity = 0
 CASE "ACK":
 @Acknowledged = 1
 CASE "20":
 @Acknowledged = 1
 default:
 }

 ###
 ### Tivoli NetView Events
 ###

386 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 if (match($source, "NV6K") OR match($source,"nvserverd"))
 {
 @Agent = "Tivoli NetView"
 switch ($ClassName)
 {
 case "TEC_ITS_SNMPCOLLECT_THRESHOLD":
 [@Severity, @Type] = lookup($snmpstatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_NODE_STATUS":
 [@Severity, @Type] = lookup($nodestatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_SERVICE_STATUS":
 [@Severity, @Type] = lookup($servicestatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_ROUTER_STATUS":
 [@Severity, @Type] = lookup($routerstatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_INTERFACE_STATUS":
 [@Severity, @Type] = lookup($ifstatus, Status3)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_SUBNET_CONNECTIVITY":
 [@Severity, @Type] = lookup($reachability, Status2)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_ISDN_STATUS":
 [@Severity, @Type] = lookup($isdnstatus, Status2)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_PIXFAIL_STATUS":
 [@Severity, @Type] = lookup($pix_state, Status4)
 update(@Severity)
 update(@Type)
 default:
 discard
 }
 }

}

 Appendix A. Lab configuration 387

ObjectServer WEIMAR probe nco_p_tivoli_eif rules
(TEC, NetView, ITM)

Example A-5 shows the rules file of the ObjectServer WEIMAR probe
“nco_p_tivoli_eif” on the Linux-based lab system.

Example: A-5 $OMINHOME/probes/linux2x86/tivoli_eif.rules

--
--
-- Copyright (C) 1994 - 2006, Micromuse, Ltd. (an IBM Company)
-- All Rights Reserved
--
-- RESTRICTED RIGHTS:
--
-- This file may have been supplied under a license.
-- It may be used, disclosed, and/or copied only as permitted
-- under such license agreement. Any copy must contain the
-- above copyright notice and this restricted rights notice.
-- Use, copying, and/or disclosure of the file is strictly
-- prohibited unless otherwise provided in the license agreement.
--
-- Ident: Id
--
--
###
This rulesfile has been developed in accordance to the IBM Netcool
Rules Files Best Practices to perform the following functionality
#
1. De-duplicate events
2. Generic-Clear to correlate Problems/Resolutions
3. Readable alarm summaries
###
Available elements:
$ClassName - Class name of the TEC event
$EventSeqNo - Event sequence number of this event
All other elements are dynamically created, based on the name/value
pairs in the event.
###

Lookup table "status, severity, type"
Lookup table valid for snmpstatus,nodestatus,servicestatus,

Note: The contents of the file shown in Example A-5 are included in the
additional materials downloadable file for this book. See Appendix B,
“Additional material” on page 399.

388 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

and routerstatus
table Status1 = {
 { "1", "1", "2" },
 { "2", "5", "1" },
 { "3", "3", "1" },
 { "4", "2", "1" },
 { "THRESHOLD_EXCEEDED", "1", "2" },
 { "REARMED", "5", "1" },
 { "UP", "1", "2" },
 { "DOWN", "5", "1" },
 { "MARGINAL", "3", "1" },
 { "UNREACHABLE", "2", "1" },
}

Lookup table "status, severity, type"
Lookup table valid for reachability and isdnstatus
table Status2 = {
 { "1", "3", "1" },
 { "2", "1", "2" },
 { "UNREACHABLE", "3", "1" },
 { "REACHABLE_AGAIN", "1", "2" },
 { "ACTIVE", "3", "1" },
 { "DORMANT", "1", "2" },
}

Lookup table "status, severity, type"
Lookup table valid for ifstatus
table Status3 = {
 { "1", "1", "2" },
 { "2", "5", "1" },
 { "3", "1", "2" },
 { "4", "2", "1" },
 { "UP", "1", "2" },
 { "DOWN", "5", "1" },
 { "ADMIN_DOWN", "1", "2" },
 { "UNREACHABLE", "2", "1" },
}

Lookup table "status, severity, type"
Lookup table valid for pixfailstatus
table Status4 = {
 { "FAILOVER", "3", "1" },
 { "RECOVERED", "1", "2" },
}

array servers;
array server_info;

 Appendix A. Lab configuration 389

array server_detail;

if(match(@Manager, "ProbeWatch"))
{
 switch(@Summary)
 {
 case "Running ...":
 @Severity = 1
 @AlertGroup = "probestat"
 @Type = 2
 case "Going Down ...":
 @Severity = 5
 @AlertGroup = "probestat"
 @Type = 1
 default:
 @Severity = 1
 }
 @AlertKey = @Agent
 @Summary = @Agent + " probe on " + @Node + ": " + @Summary
}
else
{
 @Manager = "tivoli_eif probe on " + hostname()
 @AlertGroup = $ClassName
 @Class = 6601
 @Agent = $source
 @Type = 1
 @Grade = "1"

 if(exists($msg))
 {
 if(regmatch($msg, "^'.*'$"))
 {
 $msg = extract($msg, "^'(.*)'$")
 }
 }

 if(exists($date))
 {
 if(regmatch($date, "^'.*'$"))
 {
 $date = extract($date, "^'(.*)'$")
 }
 }

#Part taken from ITM rules file

 if(exists($situation_name))
 {

390 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 if(regmatch($situation_name, "^'.*'$"))
 {
 $situation_name = extract($situation_name, "^'(.*)'$")
 }
 }

 if(exists($situation_origin))
 {
 if(regmatch($situation_origin, "^'.*'$"))
 {
 $situation_origin = extract($situation_origin,
"^'(.*)'$")
 }
 }

 if(exists($situation_displayitem))
 {
 if(regmatch($situation_displayitem, "^'.*'$"))
 {
 $situation_displayitem =
extract($situation_displayitem, "^'(.*)'$")
 }
 }

 if(exists($source))
 {
 if(regmatch($source, "^'.*'$"))
 {
 $source = extract($source, "^'(.*)'$")
 }
 }

 if(exists($situation_status))
 {
 if(regmatch($situation_status, "^'.*'$"))
 {
 $situation_status = extract($situation_status,
"^'(.*)'$")
 }
 }

 if(exists($integration_type))
 {
 if(regmatch($integration_type, "^'.*'$"))
 {
 $integration_type = extract($integration_type,
"^'(.*)'$")
 }
 }

 Appendix A. Lab configuration 391

 if(exists($situation_time))
 {
 if(regmatch($situation_time, "^'.*'$"))
 {
 $situation_time = extract($situation_time, "^'(.*)'$")
 }
 }

 if(exists($situation_eventdata))
 {
 if(regmatch($situation_eventdata, "^'.*'$"))
 {
 $situation_eventdata = extract($situation_eventdata,
"^'(.*)'$")
 }
 }

 if(exists($situation_type))
 {
 if(regmatch($situation_type, "^'.*'$"))
 {
 $situation_type = extract($situation_type, "^'(.*)'$")
 }
 }

 if(exists($situation_thrunode))
 {
 if(regmatch($situation_thrunode, "^'.*'$"))
 {
 $situation_thrunode = extract($situation_thrunode,
"^'(.*)'$")
 }
 }

 if(exists($cms_hostname))
 {
 if(regmatch($cms_hostname, "^'.*'$"))
 {
 $cms_hostname = extract($cms_hostname, "^'(.*)'$")
 }
 }

 if(exists($cms_port))
 {
 if(regmatch($cms_port, "^'.*'$"))
 {
 $cms_port = extract($cms_port, "^'(.*)'$")
 }

392 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 }

 if(exists($master_reset_flag))
 {
 if(regmatch($master_reset_flag, "^'.*'$"))
 {
 $master_reset_flag = extract($master_reset_flag,
"^'(.*)'$")
 }
 }

 if(exists($hostname))
 {
 if(regmatch($hostname, "^'.*'$"))
 {
 $hostname = extract($hostname, "^'(.*)'$")
 }
 }

 if(exists($fqhostname))
 {
 if(regmatch($fqhostname, "^'.*'$"))
 {
 $fqhostname = extract($fqhostname, "^'(.*)'$")
 }
 }

 if(exists($repeat_count))
 {
 if(regmatch($repeat_count, "^'.*'$"))
 {
 $repeat_count = extract($repeat_count, "^'(.*)'$")
 }
 }

 if(exists($severity))
 {
 if(regmatch($severity, "^'.*'$"))
 {
 $severity = extract($severity, "^'(.*)'$")
 }
 }

 if(exists($hostname))
 {
 @Identifier = $hostname
 }

 if(exists($source))

 Appendix A. Lab configuration 393

 {
 @AlertKey = $source
 @Identifier = @Identifier + ":" + $source
 }

 if(exists($sub_source))
 {
 @AlertKey = @AlertKey + ":" + $sub_source
 @Identifier = @Identifier + ":" + $sub_source
 }

 if(exists($sub_origin))
 {
 @AlertKey = @AlertKey + ":" + $sub_origin
 @Identifier = @Identifier + ":" + $sub_origin
 }

 if(exists($severity))
 {
 switch ($severity)
 {
 case "FATAL" :
 @Severity = 5
 case "60":
 @Severity = 5
 case "CRITICAL":
 @Severity = 5
 case "50":
 @Severity = 5
 case "MINOR":
 @Severity = 3
 case "40":
 @Severity = 3
 case "WARNING":
 @Severity = 2
 case "30":
 @Severity = 2
 default:
 @Severity = 1
 }
 }

 if(exists($origin))
 {
 @Node = $origin
 @NodeAlias = $origin
 }

 @Identifier = @Identifier + ":" + $ClassName

394 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 if(exists ($server_path))
 {
 $num_servers = split($server_path, servers, ",")
 $num_detail = split(servers[$num_servers], server_detail, "'")
 $num_info = split(server_detail[int($num_detail)-1],
server_info, " ")
 @TECServerHandle=server_info[2]
 @TECDateReception = server_info[3]
 @TECEventHandle=server_info[4]
 }

 @Summary = $msg
 @TECHostname = $hostname
 @TECFQHostname = $fqhostname
 @TECDate = $date
 @TECRepeatCount = $repeat_count
 @LastOccurrence = getdate
 @FirstOccurrence = getdate
 @TECStatus = $status

 #
 # Handle TEC event status
 #

 switch ($status)
 {
 CASE "CLOSED":
 @Type = 2
 @Severity = 0
 CASE "30":
 @Type = 2
 @Severity = 0
 CASE "ACK":
 @Acknowledged = 1
 CASE "20":
 @Acknowledged = 1
 default:
 }

 ###
 ### Tivoli NetView Events
 ###
 if (match($source, "NV6K") OR match($source,"nvserverd"))
 {
 @Agent = "Tivoli NetView"

 Appendix A. Lab configuration 395

 switch ($ClassName)
 {
 case "TEC_ITS_SNMPCOLLECT_THRESHOLD":
 [@Severity, @Type] = lookup($snmpstatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_NODE_STATUS":
 [@Severity, @Type] = lookup($nodestatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_SERVICE_STATUS":
 [@Severity, @Type] = lookup($servicestatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_ROUTER_STATUS":
 [@Severity, @Type] = lookup($routerstatus, Status1)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_INTERFACE_STATUS":
 [@Severity, @Type] = lookup($ifstatus, Status3)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_SUBNET_CONNECTIVITY":
 [@Severity, @Type] = lookup($reachability, Status2)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_ISDN_STATUS":
 [@Severity, @Type] = lookup($isdnstatus, Status2)
 update(@Severity)
 update(@Type)
 case "TEC_ITS_PIXFAIL_STATUS":
 [@Severity, @Type] = lookup($pix_state, Status4)
 update(@Severity)
 update(@Type)
 default:
 discard
 }
 }

 if (exists($situation_name))
 {
 @Identifier = $situation_name + ":" + $situation_origin + ":" +
$situation_displayitem + ":" + $ClassName
 @AlertKey = $situation_name
 @Node = $situation_origin
 @NodeAlias = $situation_origin
 @Agent = $source
 @Type = 20

396 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

 @ITMDisplayItem = $situation_displayitem
 @ITMStatus = $situation_status
 @ITMTime = $situation_time
 @ITMEventData = $situation_eventdata
 @ITMHostname = $cms_hostname
 @ITMPort = $cms_port
 @ITMIntType = $integration_type
 @ITMSitType = $situation_type
 @ITMThruNode = $situation_thrunode

 #if ((match($situation_status, "E") OR
 # match ($situation_status, "F")) AND
 # match($integration_type, "U"))
 #{
 # @ITMStatus= "Y"
 #}
 #update(@ITMStatus)
 #update(@ITMEventData)
 #update(@ITMHostname)
 #update(@ITMTime)

 if(exists($master_reset_flag))
 {
 @ITMResetFlag = $master_reset_flag
 update(@ITMResetFlag)
 }

 #
 # Handle additional sync with ITM Server.
 #
 if(match($situation_status, "Y") AND
 match($integration_type, "U"))
 {
 update(@ITMStatus)
 update(@ITMEventData)
 update(@ITMHostname)
 update(@ITMTime)
 }
 if(match($situation_status, "P") AND
 match($integration_type, "U"))
 {
 # Situation Stop - Resolution.
 @Type = 21
 # avoid de-dup with any event
 @Identifier = @Identifier + ':' + @Type
 }
 else if(match($situation_status, "D") AND
 match($integration_type, "U"))
 {

 Appendix A. Lab configuration 397

 # Situation Deleted - Resolution.
 @Type = 21
 # avoid de-dup with any event
 @Identifier = @Identifier + ':' + @Type
 }
 else if(match($situation_status, "N"))
 {
 if (! (match($situation_name, "**")))
 {
 update(@ITMStatus)
 update(@ITMEventData)
 update(@ITMHostname)
 update(@ITMTime)
 }
 else
 {
 # Situation Reset - Resolution.
 @Type = 21
 # avoid de-dup with any event
 @Identifier = @Identifier + ':' + @Type
 }
 }
 }

}

398 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247557

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247557.

B

© Copyright IBM Corp. 2008. All rights reserved. 399

ftp://www.redbooks.ibm.com/redbooks/SG247557
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
SG247557_addmat.zip Example system configuration files

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder. Check the README file contained within zip
file for further instructions.

400 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 407. Note that some of the documents referenced here may be available in
softcopy only.

� Migrating to Netcool/Precision for IP Networks --Best Practices for Migrating
from IBM Tivoli NetView, SG24-7375

� Creating EIF Events with Tivoli Directory Integrator for Tivoli
Netcool/OMNIbus and Tivoli Enterprise Console, REDP-4352

Online resources

These Web sites are also relevant as further information sources:

� Netcool/OMNIbus Primer for IBM Tivoli Enterprise Console Administrators

ftp://ftp.software.ibm.com/software/tivoli/education/WhitePapers/
OMNIbus_TEC_Admin.pdf

� Datasheet Netcool/OMNIbus

ftp://ftp.software.ibm.com/software/tivoli/datasheets/ds-netcool-
omnibus.pdf

� IBM Tivoli Open Process Automation Library (OPAL): IBM Tivoli
Netcool/OMNIbus Integration Best Practices

http://catalog.lotus.com/topal?NavCode=1TW10NC10

� Tivoli and Netcool Event Flow Integration

http://catalog.lotus.com/ncomnibus?NavCode=1TW10EC01

� Universal Agent Solution for Netcool/OMNIbus ObjectServer Monitoring and
UNIX

http://catalog.lotus.com/ncomnibus?NavCode=1TW10TM34

© Copyright IBM Corp. 2008. All rights reserved. 401

http://catalog.lotus.com/ncomnibus?NavCode=1TW10TM34
http://catalog.lotus.com/ncomnibus?NavCode=1TW10EC01
http://catalog.lotus.com/topal?NavCode=1TW10NC10
ftp://ftp.software.ibm.com/software/tivoli/datasheets/ds-netcool-omnibus.pdf
ftp://ftp.software.ibm.com/software/tivoli/education/WhitePapers/OMNIbus_TEC_Admin.pdf

� IBM Business Partner support and resources

http://www.ibm.com/partnerworld/

� Sybase technical documents - technical documents about Sybase using the
search in the global header or the Tech Docs Focused search below, which
allows you to search by title, doc id, and so on

http://www.sybase.com/support/techdocs

– Sybase Open ClientConntect

http://www.sybase.com/detail_list?id=8072&multi=true

– Sybase Open Server

http://www.sybase.com/products/databasemanagement/openserver/
technicalsupport

– Sybase Open ServerConnect

http://www.sybase.com/detail_list?id=8102&multi=true

� Subversion - an open-source version control system

http://subversion.tigris.org/

� IBM Software Support Toolbar

http://www.ibm.com/software/support/toolbar/

� DeveloperWorks Tivoli - technical resources for Tivoli software and security
products

http://www.ibm.com/developerworks/tivoli

� DeveloperWorks Netcool/OMNIbus Forum

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1144&cat=15

� Open Process Automation Library - Ready for IBM Tivoli software

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1100&cat=15

� IBM Tivoli Network Manager - IP Edition and Transmission Edition

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1136&cat=15

� IBM Tivoli Monitoring (ITM) 6.1

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=796&cat=15

� Security Management

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=259&cat=15

402 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=259&cat=15
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=796&cat=15
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1136&cat=15
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1100&cat=15
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=1144&cat=15
http://www.ibm.com/developerworks/tivoli
http://www.ibm.com/software/support/toolbar/
http://subversion.tigris.org/
http://www.sybase.com/detail_list?id=8102&multi=true
http://www.sybase.com/products/databasemanagement/openserver/technicalsupport
http://www.sybase.com/detail_list?id=8072&multi=true
http://www.sybase.com/support/techdocs
http://www.ibm.com/partnerworld/

� Tivoli User Groups - Through this URL you will find resources on news and
events, hot links, newsletters, acquisitions, and user community groups

http://www-306.ibm.com/software/tivoli/tivoli_user_groups/index.html
http://netcoolusers.org/

� Tivoli TME10 Mailing List

http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=374&cat=15

� Tivoli Netcool Mailing List

http://netcoolusers.org/MailingLists

� Tivoli Training for Netcool

http://www-306.ibm.com/software/tivoli/welcome/micromuse/education.html

Tivoli Netcool/OMNIbus technical information

Release notes

This document describes the associated publications, new features,
prerequisites, resolved issues, and known issues for Netcool/OMNIbus v7.1:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/rn/om71rn1.pdf

Installation and deployment guide

This book provides instructions for installing and deploying IBM
TivoliNetcool/OMNIbus, and includes details of the supported platforms and
requirements:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/ig/om71ig.pdf

Administration guide

This book describes how to perform administrative tasks using IBM Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/ag/om71ag.pdf

 Related publications 403

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/rn/om71rn1.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/ag/om71ag.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/ag/om71ag.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/ig/om71ig.pdf
http://www-306.ibm.com/software/tivoli/welcome/micromuse/education.html
http://netcoolusers.org/MailingLists
http://www-306.ibm.com/software/tivoli/tivoli_user_groups/index.html
http://netcoolusers.org/
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=374&cat=15

User guide

This guide describes how to use the Netcool/OMNIbus desktop to manage
events. It provides an overview of Netcool/OMNIbus components, as well as a
description of the operator tasks related to using the desktop tools.

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/ug/om71ug.pdf

Probe and gateway guide

This book provides general introductory and reference information about probes
and gateways. Documentation on the specific probes discussed within these
release notes can be found at the following Web site:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/pg/om71pg.pdf

Generic Log File Probe guide
The Generic Log File Probe is a multi-platform probe that reads a flat log file and
parses the values using specified value and line separators. The probe creates
dynamic, numbered elements according to the resulting parsed data.

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/probes/genlf/genlf-pdf.pdf

Syslog probe guide
Syslog is a logging mechanism implemented on UNIX platforms and does not
require any special hardware. The probe logs messages in an appropriate
system log and writes it to the system console, forwards it to a list of users, or
forwards it to another UNIX host over the network. There are three probes that
acquire data from syslogd: syslog probe, syslogd probe, and juniper syslog
probe.

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/probes/syslog/syslog-pdf.pdf

Probe for Tivoli EIF guide
A range of Tivoli products generates Event Integration Facility (EIF) messages.
The Netcool/OMNIbus probe for Tivoli EIF can receive EIF events sent from any
of these Tivoli devices and sends them to the ObjectServer.

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_OMNIbus.doc/probes/Tivoli_EIF/tveif-pdf.pdf

404 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/Tivoli_EIF/tveif-pdf.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/Tivoli_EIF/tveif-pdf.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/syslog/syslog-pdf.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/genlf/genlf-pdf.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/pg/om71pg.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/ug/om71ug.pdf

IBM Tivoli Netcool/Security Manager

Release notes
This document contains supplemental information about the Netcool/Security
Manger:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_sm.doc/sm13rn.pdf

Installation guide
This document contains installation information about the Netcool/Security
Manager:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_sm.doc/sm13inst.pdf

IBM Tivoli Netcool/Webtop

Release notes
These release notes describe the installation prerequisites and known issues for
Netcool/Webtop 2.1:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_wt.doc/rn/GI11-8191-00.pdf

Administration guide
This guide describes how to install, administer, and use IBM Tivoli
Netcool/Webtop. The chapters and appendixes describe each functional area,
and task-oriented examples are provided to assist users and administrators in
configuring and using the application:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_wt.doc/ag/Administration_Guide.pdf

IBM Tivoli Netcool GUI Foundation

Release notes
These release notes introduce and describe the known issues of the Netcool GUI
Foundation:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_gui.doc/rn/NGF_1.1.359_RelNotes.pdf

 Related publications 405

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_gui.doc/rn/NGF_1.1.359_RelNotes.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_gui.doc/rn/NGF_1.1.359_RelNotes.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_wt.doc/ag/Administration_Guide.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_wt.doc/rn/GI11-8191-00.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_sm.doc/sm13inst.pdf
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_sm.doc/sm13rn.pdf

Administration guide
This guide describes how to administer the Netcool GUI Foundation. The
chapters and appendixes describe each functional area, and provide
task-oriented examples to assist administrators in configuring and using the
application:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.
netcool_gui.doc/admin/NGF_1.1.359_Admin.pdf

IBM Tivoli Netcool tools and utilities

Using IBM Tivoli Include Library

This document provides further reference information about IBM Tivoli
Netcool/OMNIbus Knowledge Library 1.3 and is located at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.ne
tcool_OMNIbus.doc/probes/nckl/nckl-pdf.pdf

Global Advanced Technology team tools and utilities

IBM Tivoli customers with approved login accounts can find useful tools and
utilities (for example, the Netcool IDE and the mib2rules). The GAT tools and
utilities Web site is:

http://www-03.ibm.com/software/tivoli/gat/toolsutils

Netcool IDE for Windows
http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&Obj
ectId=85

Netcool IDE for UNIX
http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&Obj
ectId=61

mib2rules for Windows
This is a fully featured MIB browser. Export to csv, html, Netcool lookup tables, or
Netcool rulesfiles. Generate test traps and issue SNMPGETs to SNMP-enabled
devices.

http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&Obj
ectId=221

406 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&ObjectId=221
http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&ObjectId=221
http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&ObjectId=61
http://www-03.ibm.com/software/tivoli/gat/toolsutils?Page=show_list&ObjectId=85
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/nckl/nckl-pdf.pd
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc/probes/nckl/nckl-pdf.pd
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_gui.doc/admin/NGF_1.1.359_Admin.pdf
http://www-03.ibm.com/software/tivoli/gat/toolsutils

The Netcool MIB database
The Netcool MIB database houses the largest repository of SNMP MIBs on the
Internet. It has been compiled and made available to any IBM customer with a
support contract at no additional cost. Users can search for objects by name or
OID, or can search for MIBs by MIB name. They can then add any MIBs to the
cart for later download. With mib2rules technology inside, MIBs in a user's cart
can be downloaded in a number of different formats, including:

� Standalone rules for any of the Netcool trapd probes

� NCiL format rules suitable of inclusion in an existing Netcool Include Library
(NCiL) deployment

� NCKL format rules suitable of inclusion in an existing Netcool Knowledge
Library (NCKL) deployment

� Lookup table suitable for including in any Netcool rulesfile

� HTML with frames suitable for making available on a Web page or simply
browsing from the desktop

� HTML without frames suitable for using in a Netcool Eventlist tool

� CSV files for importing into a spreadsheet

� Individual plain text files suitable for popping up in a help window (that is,
nco_message)

� mib2rules data files suitable for reading with a standalone version of
mib2rules (v5.0 and later)

http://www-03.ibm.com/software/tivoli/gat/mibdb/mibdb

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

 Related publications 407

http://www-03.ibm.com/software/tivoli/gat/mibdb/mibdb
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

RSS feed list

RSS feeds allow you to stay up to date with the latest content created for specific
IBM Software products. For more information about RSS and how to get started,
visit this RSS help page:

http://www-306.ibm.com/software/support/rsshelp.html

Example B-1 shows a collection of RSS feeds defined in Outline Processor
Markup Language (OPML1) format. The feed definitions in Example B-1 focus on
IBM Tivoli and Netcool channels only. This OPML file should be ready for import
into any compatible RSS feed reader.

Example: B-1 RSSOwl feeds.opml

<?xml version="1.0" encoding="UTF-8"?>
<!--XML generated by RSSOwl (http://www.rssowl.org) on 11.10.07 11:17-->
<opml version="1.1">
 <head>
 <title>OPML generated by RSSOwl (http://www.rssowl.org)</title>
 <dateCreated>11.10.07 11:17</dateCreated>
 <ownerName>DietgerBahn</ownerName>
 </head>
 <body>
 <outline text="+ IBM Feeds +">
 <outline text="IBM Tivoli Enterprise Console">
 <outline text="OPAL (IBM Tivoli Open Process Automation Libary)">
 <outline text="IBM Tivoli Enterprise Console - new entries"
title="IBM Tivoli Enterprise Console - new entries" type="rss"
xmlUrl="http://catalog.lotus.com/feeds/IBM_Tivoli_TEC_new_rss.xml#1"
rssOwlUpdateInterval="60" htmlUrl="http://catalog.lotus.com/rss"
language="en-us" description="IBM Tivoli Enterprise Console - new entries" />
 </outline>
 </outline>
 <outline text="IBM Tivoli Monitoring">

1 http://www.opml.org

408 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-306.ibm.com/software/support/rsshelp.html
http://www.opml.org

 <outline text="Tivoli - IBM Tivoli Monitoring Version 6" title="Tivoli
- IBM Tivoli Monitoring Version 6" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/2366.xml?rss=s2366&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliMonitori
ngV6.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli" />
 </outline>
 <outline text="IBM Tivoli Netcool">
 <outline text="IBM Netcool Service Quality Manager">
 <outline text="Tivoli - Tivoli Netcool Service Quality Manager"
title="Tivoli - Tivoli Netcool Service Quality Manager" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3257.xml?rss=s3257&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/TivoliNetcoolServ
iceQualityManager.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli" />
 </outline>
 <outline text="IBM Tivoli Netcool/Impact">
 <outline text="Tivoli - IBM Tivoli Netcool/Impact" title="Tivoli -
IBM Tivoli Netcool/Impact" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3124.xml?rss=s3124&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetcoolI
mpact.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 </outline>
 <outline text="IBM Tivoli Netcool/Reporter">
 <outline text="Tivoli - IBM Tivoli Netcool/Reporter" title="Tivoli -
IBM Tivoli Netcool/Reporter" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3123.xml?rss=s3123&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetcoolR
eporter.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 </outline>
 <outline text="IBM Tivoli Netcool Performance Manager for Wireless">
 <outline text="Tivoli - Tivoli Netcool Performance Manager for
Wireless" title="Tivoli - Tivoli Netcool Performance Manager for Wireless"
type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3256.xml?rss=s3256&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/TivoliNetcoolPerf
ormanceManagerforWireless.html" language="en-us" description="Tivoli support
provides technical self-help information to help troubleshoot technical
problems with Tivoli" />

 Related publications 409

 </outline>
 <outline text="Netcool/OMNIbus">
 <outline text="OPAL (IBM Tivoli Open Process Automation Libary)">
 <outline text="IBM Tivoli Monitoring - new entries" title="IBM
Tivoli Monitoring - new entries" type="rss"
xmlUrl="http://catalog.lotus.com/feeds/IBM_Tivoli_TM_new_rss.xml"
rssOwlUpdateInterval="60" htmlUrl="http://catalog.lotus.com/rss"
language="en-us" description="IBM Tivoli Monitoring - new entries" />
 <outline text="IBM Tivoli Netcool OMNIbus - new entries" title="IBM
Tivoli Netcool OMNIbus - new entries" type="rss"
xmlUrl="http://catalog.lotus.com/feeds/IBM_Tivoli_TNO_new_rss.xml"
rssOwlUpdateInterval="60" htmlUrl="http://catalog.lotus.com/rss"
language="en-us" description="IBM Tivoli Netcool OMNIbus - new entries" />
 </outline>
 <outline text="Support - OMNIbus Virtual Operator" title="Support -
OMNIbus Virtual Operator" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3128.xml?rss=s3128&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolOMNIbusVir
tualOperator.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 <outline text="DW - Netcool OMNIbus" title="DW - Netcool OMNIbus"
type="rss"
xmlUrl="http://www.ibm.com/developerworks/forums/dw_forum_rss.jsp?forum=1144&am
p;full=true" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/developerworks/forums//dw_forum.jsp?forum=1144&
cat=15&ca=drs-fo" language="en" description="RSS of Netcool OMNIbus topics"
/>
 <outline text="Tivoli - IBM Tivoli Netcool/OMNIbus" title="Tivoli -
IBM Tivoli Netcool/OMNIbus" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3120.xml?rss=s3120&a
mp;ca=rsstivoli#1" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetcoolO
MNIbus.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 <outline text="International Netcool Users Group"
title="International Netcool Users Group" type="rss"
xmlUrl="http://lists.netcoolusers.org/archives/users/recent.rss"
rssOwlUpdateInterval="60" htmlUrl="http://netcoolusers.org" language="en-us"
description="The Netcool Users mailinglist provides you with direct access to
Netcool users, operators and administrators around the World. The purpose of
this list is to help people who are tasked with using, operating and supporting
the Netcool Suite of products (aka Cisco InfoCenter)." />
 </outline>
 <outline text="Netcool/Webtop">
 <outline text="Tivoli - IBM Tivoli Netcool/Webtop" title="Tivoli -
IBM Tivoli Netcool/Webtop" type="rss"

410 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3121.xml?rss=s3121&a
mp;ca=rsstivoli#1" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetcoolW
ebtop.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 <outline text="Support - Netcool GUI" title="Support - Netcool GUI"
type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3144.xml?rss=s3144&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolGUI.html"
language="en-us" description="Tivoli support provides technical self-help
information to help troubleshoot technical problems with Tivoli products." />
 </outline>
 <outline text="Netcool Carrier VoIP Manager">
 <outline text="Tivoli - Tivoli Netcool Carrier VoIP Manager"
title="Tivoli - Tivoli Netcool Carrier VoIP Manager" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3322.xml?rss=s3322&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetcoolC
arrierVoIPManager.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli" />
 </outline>
 <outline text="Network Manager (Netcool/Precision)">
 <outline text="Support - IBM TNM TN Edition" title="Support - IBM TNM
TN Edition" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3117.xml?rss=s3117&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetworkM
anagerTransmissionEdition.html" language="en-us" description="Tivoli support
provides technical self-help information to help troubleshoot technical
problems with Tivoli products." />
 <outline text="OPAL - NetView" title="OPAL - NetView" type="rss"
xmlUrl="http://catalog.lotus.com/feeds/IBM_Tivoli_TN_new_rss.xml"
rssOwlUpdateInterval="60" htmlUrl="http://catalog.lotus.com/rss"
language="en-us" description="IBM Tivoli NetView - new entries" />
 <outline text="DW - IBM TNM IP & TN" title="DW - IBM TNM IP &
TN" type="rss"
xmlUrl="http://www.ibm.com/developerworks/forums/dw_forum_rss.jsp?forum=1136&am
p;full=true" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/developerworks/forums//dw_forum.jsp?forum=1136&
cat=15&ca=drs-fo" language="en" description="RSS of IBM Tivoli Network
Manager - IP Edition and Transmission Edition topics" />
 <outline text="Support - IBM TNM IP Edition" title="Support - IBM TNM
IP Edition" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3118.xml?rss=s3118&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetworkM

 Related publications 411

anagerIPEdition.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 </outline>
 <outline text="TBSM - (Netcool/RAD)">
 <outline text="Support - Realtime Active Dashboards" title="Support -
Realtime Active Dashboards" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3126.xml?rss=s3126&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolRealtimeAc
tiveDashboards.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 <outline text="Support - IBM TBSM" title="Support - IBM TBSM"
type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3189.xml?rss=s3189&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliBusiness
ServiceManager.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 </outline>
 <outline text="Service Monitor Reporter" title="Service Monitor
Reporter" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3160.xml?rss=s3160&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolServiceMon
itorReporter.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 <outline text="Portal" title="Portal" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3122.xml?rss=s3122&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolPortal.htm
l" language="en-us" description="Tivoli support provides technical self-help
information to help troubleshoot technical problems with Tivoli products." />
 <outline text="System Service Monitor" title="System Service Monitor"
type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3127.xml?rss=s3127&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolSystemServ
iceMonitor.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 <outline text="Service Monitor Global Perspective ISM" title="Service
Monitor Global Perspective ISM" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3162.xml?rss=s3162&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolServiceMon

412 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

itorGlobalPerspectiveISM.html" language="en-us" description="Tivoli support
provides technical self-help information to help troubleshoot technical
problems with Tivoli products." />
 <outline text="Netcool for VoIP" title="Netcool for VoIP" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3119.xml?rss=s3119&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolforVoIP.ht
ml" language="en-us" description="Tivoli support provides technical self-help
information to help troubleshoot technical problems with Tivoli products." />
 <outline text="Visionary" title="Visionary" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3116.xml?rss=s3116&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolVisionary.
html" language="en-us" description="Tivoli support provides technical self-help
information to help troubleshoot technical problems with Tivoli products." />
 <outline text="Data Center Monitors" title="Data Center Monitors"
type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3129.xml?rss=s3129&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolDataCenter
Monitors.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 <outline text="Service Monitor Client Diagnostic" title="Service
Monitor Client Diagnostic" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3161.xml?rss=s3161&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolServiceMon
itorClientDiagnostic.html" language="en-us" description="Tivoli support
provides technical self-help information to help troubleshoot technical
problems with Tivoli products." />
 <outline text="Service Monitor for Network Usage" title="Service
Monitor for Network Usage" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3159.xml?rss=s3159&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolServiceMon
itorforNetworkUsage.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 <outline text="Netcool for Asset Management" title="Netcool for Asset
Management" type="rss"
xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3146.xml?rss=s3146&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolforAssetMa
nagement.html" language="en-us" description="Tivoli support provides technical
self-help information to help troubleshoot technical problems with Tivoli
products." />
 <outline text="Netcool for Security Management" title="Netcool for
Security Management" type="rss"

 Related publications 413

xmlUrl="http://www-306.ibm.com/software/support/rss/tivoli/3130.xml?rss=s3130&a
mp;ca=rsstivoli" rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/software/sysmgmt/products/support/NetcoolforSecurit
yManagement.html" language="en-us" description="Tivoli support provides
technical self-help information to help troubleshoot technical problems with
Tivoli products." />
 </outline>
 <outline text="IBM Tivoli Open Process Automation Library - updated
entries" title="IBM Tivoli Open Process Automation Library - updated entries"
type="rss"
xmlUrl="http://catalog.lotus.com/feeds/IBM_Tivoli_TOPAL_updated_rss.xml"
rssOwlUpdateInterval="60" htmlUrl="http://catalog.lotus.com/rss"
language="en-us" description="IBM Tivoli Open Process Automation Library -
updated entries" />
 <outline text="Education - Tivoli" title="Education - Tivoli" type="rss"
xmlUrl="http://www-306.ibm.com/software/tivoli/education/rss/ibm_ed.rss"
rssOwlUpdateInterval="60"
htmlUrl="http//www.ibm.com/software/tivoli/education/rss/" language="en-us"
description="This is the Tivoli Education RSS Feed" />
 <outline text="IBM Redbooks - Tivoli" title="IBM Redbooks - Tivoli"
type="rss" xmlUrl="http://w3.itso.ibm.com/rss/tivoli.xml"
rssOwlUpdateInterval="60" htmlUrl="http://w3.itso.ibm.com" language="en-us"
description="Latest publications from IBM Redbooks. Most are made available
online for free in PDF and HTML formats. This feed is updated in real-time." />
 <outline text="developerWorks : Tivoli : Technical library"
title="developerWorks : Tivoli : Technical library" type="rss"
xmlUrl="http://www.ibm.com/developerworks/views/tivoli/rss/libraryview.jsp"
rssOwlUpdateInterval="60"
htmlUrl="http://www.ibm.com/developerworks/index.html" language="en-us"
description="The latest content from IBM developerWorks" />
 <outline text="IBM Podcasts" title="IBM Podcasts" type="rss"
xmlUrl="http://www.ibm.com/investor/ibm_ir_podcast.xml"
rssOwlUpdateInterval="60" htmlUrl="http://www.ibm.com/investor/"
language="en-us" description="Audio interviews, point of views and news
pertinent to IBM investors" />
 </outline>
 </body>
</opml>

414 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Index

Symbols
$OMNIHOME 282–283, 307
.load_classes 126, 249

A
ACF 167
Acknowledged 28
ACP profiles 123
action buttons 138
actions 104
Active Event List (AEL) 92
adapter 9
adapters 104
Additional materials 399
Administration Interface 74
AES 34
AFTER IDUC 199
Agent 196
agent sources

Omegamon 110
agents 175
Agile ATM Switch Management 80
AlertGroup 196
AlertKey 196
alerts.conversions 251, 253
alerts.details 65
alerts.journal 65
alerts.problem_events 224
alerts.status 64, 196
alerts.status table 224
AMOS 275
Analyze and Automate Layer 61
Apache 91
API Probes 81
Application Dependency Discovery Manager 107
architecture 37
ARS 135
as400 adapter 108
AS400 messages 114
assess.pl 107
Assigned to users 28
attributes

Agent 221

© Copyright IBM Corp. 2008. All rights reserved.
AlertGroup 222
AlertKey 222
LastOccurrence 222
Manager 222
Node 222
Severity 222

audit 105
audit2d1 206
auditing database 136
Authentication 41
Authorization 41
automated alerting 104
automations 221

delete_clears 224
generic_clear 221

B
BARI.props 174
BARI_PA.conf 176
BAROC

file definitions 126
BAROC class 194
BAROC class information 138
baroc file 108
barocs 370
Benefits 23
best practices 100
bi-directional gateway 94, 135
Bidirectional gateways 89
Borland 82
bottlenecks 135
buttons 138

C
Cause 133
cause event 218
CEC 141
Central Event processing 127
Certificate Authority (CA) 99
Change rule 128
Checklist 143
class_lookup_create() 253
classes 302

 415

cleanup.rls 49
Clearing 133
clearing event 220
coexistence 147
Collection Layer 61
collection layer 96
collector rule 130
Color patterns 141
Command line sources 115
Command-line framework commands and tasks 48
commands

assess.pl 107
epreport.pl 107
ESync2000Linux.bin 292
event 284
itmcmd 311
lcf_env.sh 196
nco_baroc2sql 127, 249
nco_dbinit 171, 341
nco_objserv 179, 344
nco_p_glf 194
nco_p_syslog 359
nco_pa 345
nco_ping 361
nco_sql 194, 282, 306, 309
nco_xigen 174
nvp_add 214, 245
nvtecia 284
tec_agent_demo 220
tecits_upgrade 283
wgetsub 106
wlookup 106
wls 106
wlsac 106
wlscurrb 126
wlsinst 369
wpostemsg 191, 195, 207
wrb 126, 279
wrimtest 363
wtdbclear 372
wtdumprl 372

Common Event Console 141, 315
connection_less mode 121
connection_oriented mode 121
Consolidate Layer 61
Consolidation 25
Conversions 73
CORBA 80
CORBA Probes 81

correlated events 225
correlation 8, 288
Correlation rule 128
correlation statement 228
correlation.rls 49
correlations 133
custom buttons 138
Custom EIF applications 115

D
daemon

Process Automation 179
Data Manipulation Language (DML) 188
database trigger 133, 202
db_cleanup.rls 49
DB2 156, 167
db2inst1 229
Deacknowledged 28
deduplicated events 96
de-duplication 100, 111
Deduplication configuration 320
Default Port Usage 375
default rulesets 8
delete_clears automation 224
Deleted 28
dependency.rls 49
Deployment considerations 116
DES 34
Desktop upgrade 136
Device Probes 80
DHCP 10
Dispatch engine process 44
Distributed Event Processing 123
Distributed Monitoring 109
distribution 49
DML 188
DNS 10
dup_detect attributes 191
dup_detect modifier 130, 194
duplicate events 130, 194
duplication of consoles 151
Dynamic configuration and administration 24
dynamic HTML Lightweight Event List (LEL) 92

E
ebusiness.rls 49
Effect 133
effect event 218

416 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

EIF
Probe considerations 122

EIF Configuration example 311
EIF Gateway 150
EIF integration 167
EIF interface 149
EIF Java API 83
EIF mechanism 150
EIF Probe 82, 110, 283

configuring 283
EIF receiver 372
encryption 34
Endpoint 39
Enterprise Monitoring Server 300
Enterprise OID information 112
Environmental Assessment 103
epreport.pl 107
errorevent.conf 308
escalate.rls 49
ESync2000Linux.bin 292
event 284

UPS_Fan_Down 215
UPS_Temp_Degraded 216

event class 228
event enrichment 32
Event Flow

end-to-end 104
Event flow 154
Event Flow Integration 147
Event flow integration

TEC based 149
Event Forwarder 56
Event Integration Facility (EIF) 82
Event List 14
event list

correlated events 225
event log Adapter 322
Event Log probe 323
Event management 8
event management

customization 284
event management system audit 105
Event Processing 187

distributed 123
inputs and outputs 104

event processing 145
event processing examples 129
Event Server 39
event severities 75

Event Sources 48
event sources

configuring 277
IBM Tivoli Monitoring 109
NetView 110

event storms 121
Event Synchronization 292

installation wizard 293
event synchronization 151
Event Viewer 12
Event visualization 11
event visualization and management 28
event_activity.rls 49
event_filtering.rls 50
event_thresholds.rls 50
EventList 73
events 278

attributes 306
cause 218
clearing 220
effect 218
Escalation 235
handling duplicate events 194
Interface Down 287
manipulation 104
Node Down 287
OMNIbus values 221
Pre-Classification 275
Processing 188
Processing Migration 189
resolution 188
severities 75
severity 235
Source Hosts 106
sources 104
storms 121
SU_Failure 245
throughput 120
volume 120

EventServer 123
exec_program 128
exec_task 128
expire automation 204
extended attributes 213

content 214
database trigger 215
EIF rules file 244
nvp_add 213
nvp_exists 213

 Index 417

nvp_get 213
nvp_remove 213
nvp_set 213

Extended Event Recognition 275
extended glf.rules file 206
ExtendedAttr 190, 213, 245
External Event Database 47
external Omnibus procedure 234

F
fact files 239
Failover 27
failover 146
failover configuration 26
files

.load_classes 126, 249
audit2d1 206
BARI.props 174
BARI_PA.conf 176
errorevent.conf 308
glf.props 194
glf.rules 194
hosts 212
inittab 176, 377
itm_proc.sql 308
mhntlog.hosts 339
mhntlog.props 337
mhntlog.rules 337
nco_igen 172
nco_p_mhntlog.dll 332
nco_p_mhntlog.exe 332
nco_xigen 363
NCOMS.props 306
om_tec.conf 362
omni.dat 172
probe-name.log 243
rule_sets_EventServer 127, 279
situpdate.conf 308–309
situser.conf 310
syslog.conf 358
syslog.props 359
tec_config.bat 283
tec_gateway.cache 362
tec_gateway.conf 123, 362
tec_gateway_sce.cache 362
tec_logfile.cache 361
tec_logfile.conf 361
tec_logfile.fmt 361

tecad_logfile.baroc 244
tecint.conf 372
tecroot.xml 126
tivoli_eif.cache 361
tivoli_eif.rules 244, 283, 307

Filter Builder 29
filter2b 199
Filtering 125
filtering 104
Filtering Events 140
filter-out 198
final configuration 161
Firewall considerations 98
firewall considerations 121
firewalls 146
flash_not_ack 134
Flex 64
formats 8
Formatting 123
forward_event 278
Forwarder

Situation Update 310
forwarding events 278
forwarding.rls 50
Framework 368
Framework and TEC Tasks 48
Framework Authentication 41
FTP 10
Fully interconnected connections 52
functions

geteventcount 242
getload 242
updateload 242

G
Gateway 39, 167
Gateway Receiver 167
Gateway Receiver component 42
Gateways 87
gateways 22
General suggestions 130
Generic Clear automation 100
Generic Clear overhead 100
generic_clear automation 133, 221
generic_clears automation 191
geteventcount 132, 209, 242
getload 242
glf.props 194

418 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

glf.rules 194, 201
global TMR Roles 41
GUI 92

H
heartbeat 122
heartbeat.rls 50
Heroix 80
hierarchical TEC events 255
hierarchy of TEC servers 135
hierarchy-test-ok 255
hostname 131
hosts 212
html 138
HTTP 10
HTTPS 10
HUB 58
Hub and spoke connections 51

I
IBM Maximo 135
IBM Service Management 4
IBM Tivoli Monitoring 54, 290
IBM Tivoli Monitoring (ITM) V5.1.x 21
IBM Tivoli Monitoring (ITM) V6.1 21
IBM Tivoli Monitoring (ITM) V6.2 21
Identifier 196
IDUC

AFTER IDUC command 199
IDUC connection 98
Iduc.ListeningPort property 98
IMAP 10
Inform Layer 61
inittab 176, 377
insert.sql 250
installation in phases 147
Instant Clearing 100
integration

Netcool/OMNIbus and NetView 281
interface_correlate_nodeup 289
Interfaces file

generation 173
Intra-Device Correlation 275
ITM 156, 370

attributes 306
event management 306
integration 291

ITM 5.1.x 109

ITM 6.1 109
ITM 6.2 110
ITM Agents 54
ITM_Linux_Disk 317
itm_proc.sql 308
itmcmd 311

J
Java Console 139
Java Event Console 46
java utility 126
Java-based Active Event List (AEL) 92

L
Lab configuration 367
LastOccurrence 196
LastOccurrence field 237
lcf_env.sh 196
libOpl 82
Lightweight Event List (LEL) 92
link_effect_to_cause predicate 217
Load balancing 24
Localization support 94
Log File Probes 80
logfile adapter 49, 108, 198
Logfile adapter for linux 167
Logfile messages 114
logic 105
lookup file

example 254

M
mail_on_critical trigger 135
maintenance_mode.rls 50
Managed Node 39
Manager 196
Manager of Managers 135
manager of managers 147
Map definition file 90
Marconi 80
MASTER 240
Master process 44
master.class_membership 250, 252
Master-remote connections 52
Maximo 135, 145
MH NT Event Log probe 357
mhntlog.hosts 339

 Index 419

mhntlog.props 337
mhntlog.rules 337
Microsoft Windows 49
Miscellaneous Probes 81
monitoring server

configuration 311
Monitors 87, 140
multi-byte character sets 83
Multiple HUB TEMS to HUB/Spoke TEC 58
Multiple region architectures 51
multiple Tivoli regions 50

N
NCKL 86
NcKL 274
nco_baroc2sql 126–127, 249
nco_baroc2sql script 248
nco_config 179
nco_dbinit 171, 341
nco_event 179
nco_igen 172
nco_objserv 179, 344
nco_p_glf 194
nco_p_mhntlog.dll 332
nco_p_mhntlog.exe 332
nco_p_syslog 359
nco_p_tivoli_eif 185, 382, 388
nco_pa 345
nco_pa_start 176
nco_pa_stop 176
nco_patch 181, 184
nco_ping 361
nco_routing 179
nco_sql 127, 194, 224, 251, 282, 306, 309
nco_sql statements 137
nco_xigen 174, 363
NCOMS 98, 185
NCOMS.props 306
Netcool GUI Foundation 92
Netcool java utility 126
Netcool Knowledge Library 86, 274
Netcool Probe

configuration 185
Netcool/Impact 22, 153
Netcool/OMNIbus

Directory Structure Reference 374
Netcool/OMNIbus rules 100
Netcool/Precision IP/TN 95

Netcool/Provisio 136
Netcool/Reporter 136
Netcool/Security Manager 137
Netcool/Webtop 91, 136
NetView 156, 167
NetView 7.1.4/5 108
NetView event sources 110
netview.rls 50, 111, 225
new_row trigger 131
NGF 92
Node 196
node_corr_new 285
node_correlate_interface rule 285
NodeDown 111
NodeUp 111
non-TME transport 123
Non-TME windows adapter 167
notify.rls 50
nvp_add 213–214, 245
nvp_exists 213
nvp_get 213
nvp_remove 213
nvp_set 213
nvtecia 284

O
Object Query Language (OQL) 22
ObjectServer 62

configuring 282
database Initialization 171
desktop 136
event source routes

as400 adapter 108
DM 3.7 108
ITM 5.1.x 108
ITM 6.1 108
ITM 6.2 108
logile adapter 108
NetView 7.1.4/5 108
postemsg 109
postzmsg 109
snmp adapter 108
unix syslogd 108
windows adapter 108
wpostemsg 108
wpostzmsg 109

interfaces 172
logfile definition 205

420 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Properties Configuration 174
schema 282
shutdown 180
startup 179

ObjectServer attributes
Agent 221
AlertGroup 222
AlertKey 222
LastOccurence 222
Manager 222
Node 222
Severity 222

ObjectServer automations 221
ObjectServer SQL 18
ODBC 42
ODBC Gateways 158
OID 112
om_tec.conf 362
Omegamon agent sources 110
omni.dat 172
OMNIbus

as Manager of Manager 151
db schema 306
desktop 158
Directory Structure Reference 374
typical event flow 151

Omnibus
external procedure 234

OMNIbus server
configuring 306

one-way integration 111
One-way region connections 51
Open URL tool 138
OQL 22
Oracle 79
outputs 104
ov_default.rls 50
Owned 28

P
PA.NAME 179
PA.PASSWORD 179
PA.Username 306
parallel installation 147
parsed input fields 201
parseEvents.pl 144
Parsing 243
PARSING FAILED 243

parsing failed message 127
PasswordEncryption 34
Peer-to-peer failover 28
performance 99
Performance considerations 83
phased migration 158
Plain rule 128
Planning Guidelines 103
policy based distribution and subscription 49
POP 10
Popup_Message 135
Port Usage 98
ports 375

Netcool Probes 376
Netcool Security Manager 375
Netcool/OMNIbus 375
Netcool/Webtop 376

postemsg 48, 109
postzmsg 48, 109, 115, 373
predicate

link_effect_to_cause 217
pre-filtering 113
pre-insert trigger 131
Prioritized 28
Probe

Netcool configuration 185
Probe for Heroix RoboMon Element Manager 80
Probe for Marconi ServiceOn EMOS 80
Probe rule

lookup tables 211
probe rule

glf.rules 201
probe watch 122
probe-name.log 243
probe-nco-p-nonnative probe 82
procedure execution 255
Process Agent 306

installing on Windows 340
Process Automation

configuration 175
configuring 176
daemon 377
startup script 377

Process Automation daemon 179
Process Control

toggle feature 181
Process Control agents 175
Process control agents on Windows machines 129
processes

 Index 421

nco native event GUI 179
nco_config 179
nco_event 179
nco_objserv 179

profile 377
Profiling 24
Propagating status change 225
Properties file 90
Provisio 136
proxies 146
Proxy Server 75

R
rc.nco_pa 176
rc.nco_pa startup 176
RDBMS Server 39
re_send_event.conf predicate 145
re_send_event_conf 135, 278
reception action 131
Reception engine process 44
Red Hat environment 170
Redbooks Web site 407

Contact us xvi
region architectures 51
region connections 51
regular expressions 212
Reliability 26
Remedy 135, 145
Remote procedure execution 128
repeat_count 206–207
Reporter 136
resilience 146
Resolved 28
Restriction Filters 73
RIM 368
RIM Host 39
RIM Object 42
Root cause analysis 274
RouterDown 111
routing gateway 96
rule bases 302
Rule engine process 44
rule types 128
rule_sets_EventServer 127
rules

forwarding raw events 278
frequently used 128
nco_p_tivoli_eif 388

node_correlate_interface 285
rules file

example 382
rules processing 104
Rulesets 49

S
safety net mechanism 108
Scalability 138
scalability 24
SCE 123, 125

configuration 371
Scenarios 50
schema 211, 306
scripts

nco_baroc2sql 248
rc.nco_pa 176
rc.nco_pa startup 176
security.sql 136
tec_help.pl 258

second stage 159
Secure Sockets Layer 98
Secure Sockets Layer (SSL) 34
Security 33
Security Manager 137
security.sql 136
Self monitoring 243
send_email 135
sendEvents.pl 122
Service level reporting 136
Service Management 4
Severity 196
SG247557_addmat.zip 400
Simple Network Management Protocol 48
Simple rules 128
Single HUB TEMS 60
sit_ack_expired_def_action 308
sit_resurface_def_action 308
SitForwarder 309
situation update forwarder (SUF) 145
situpdate.conf 308–309
situser.conf 310
slot definitions 8
slots 130
SMS 158
SNMP 10, 48, 156
SNMP Adapter 167
snmp adapter 108

422 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

SNMP probe 161
SNMP traps 114
Sorting Events 140
Sources 48
Spokes 58
SQL 188

correlation statement 228
SSL tunnel 98
Startup command file 90
State Correlation Engine 125
State Correlation Engine processing 125
StateCorrelationConfigURL 194
store and forward 79
strategy 103
SU_Failure event 245
sub_source attribute 241
subscription 49
SUF 145
Summary 196
SWITCH statement 245
Sybase 47, 64
synchronization 94, 111, 151
synchronization tools 89
syncronization 145
syslog 114
syslog daemon 114
syslog probe 114
syslog.conf 358
syslog.props 359
syslogd probe 114
system audit 105

T
Table replication file 90
Tables 64
tables

alerts.status 224
TADDM 107
TapiSrv 346
Task engine process 44
TBSM 116
TCP/IP Port usage 121
TEC

adapter pre-filtering 113
Adapters 154
analyzing the TEC rule base 127
barocs 370
Class UPS_Temp_Degraded 199, 208

command line utilities 48
Components 41
components 166
Console 41
custom buttons 138
Dispatch engine process 44
Environmental Assessment 103
event flow 43
event flows 166
event log Adapter 322
Event Server 43
Event Source generation commands and scripts
372
Event Synchronization 56
Event Viewer 56
extracting console information 137
fact files 239
forwarding rules 278
installation 368
intermediate event collector 280
Master process 44
multi-region environment 53
NetView Adapter configuration 283
Operator actions 139
Outputs 134
Reception engine process 44
replacement strategy 152
Rule engine process 44
rule sets 369
sample format statements 124
Task engine process 44
Tasks 135

TEC - ITM integration Architecture 56
TEC ACF Gateway 40
TEC Adapter 40
TEC Adapter (non-TME) 40
TEC Console 40
TEC Gateway 40
TEC SCE Gateway 40
tec_agent_demo tool 220
tec_config.bat 283
tec_dispatch 43
tec_forward 135
tec_gateway 123
tec_gateway.cache 362
tec_gateway.conf 123, 362
tec_gateway_sce.cache 362
tec_help.pl 258
TEC_ITS_INTERFACE_STATUS 284

 Index 423

TEC_ITS_NODE_STATUS 284
tec_logfile.cache 361
tec_logfile.conf 361
tec_logfile.fmt 361
TEC_OMNIbus.tar 158
tec_reception 43
tec_rule) 43
tec_server 43
tec_task 43
tecad_logfile.baroc 244
tecad_nv390fwd.rls 50
tecad_nv390msg.rls 50
tecad_snaevent.rls 50
tecad_win 113
tecint.conf 372
TEC-ITM integration event flow 57
tecits_upgrade 283
tecroot.xml 126
telephony_service 354
temporal 237
TEMS 300

ITM connector configuration 313
TEMS Hub 54
TEMS HUB infrastructure (58
tems_name 311
TEP 40
TEP client 54
TEP workspace 318
TEPS 54, 141
testing plan 144
textual-conventions 85
third stage 160
thread pool 83
three-tier architecture 97
threshold rule 130, 208
timed array window 132
time-out 122
Timer rule 128
Tivoli & Netcool Integration package 158
Tivoli Application Dependency Discovery Manager
107
Tivoli Business Service Manager 4.1 23, 152
Tivoli Business Systems Manager 116
Tivoli Configuration Manager 107
Tivoli Data Warehouse gateway integration 136
Tivoli Desktop 40
Tivoli EIF 282
Tivoli EIF Probe

configuring 283, 307

Tivoli Enterprise Console 7
Tivoli Enterprise Portal 40
Tivoli Framework 166
Tivoli framework commands 106
Tivoli Monitoring 167
Tivoli NetView 20
Tivoli Network Manager Entry Edition 113
Tivoli Network Manager IP Edition 22, 152, 154
Tivoli regions 50
Tivoli secure logon 45
tivoli_eif.cache 361
tivoli_eif.props 84
tivoli_eif.rules 244, 307
tivoli_eif.rules file 283
TME UNIX 49
TMR 368
TMR Region 39
TMR Resource Roles 41
TMR Roles 41
TMR Server 39, 42
TNM 152
tokenize 85
Tomcat 91
Tools 73
trapd daemon 112
trigger

interface_correlate_nodeup 289
node_corr_new 286

trigger flash_not_ack 237
triggers 25

flash_not_ack 134
mail_on_critical 135
new_row 131
pre-insert 131

trouble ticket systems 104
Trouble Ticketing 158
trouble ticketing system. 134
Troubleshooting 361
troubleticket.rls 50
tunnel 98
Two-tiered architecture 95
Two-way region connections 51
Type 196
typical event flow 151

U
uni-directional gateway 135
unidirectional ObjectServer gateway 89

424 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

unix syslogd 108
updateload 132, 209, 242
Upgrade

strategies 147
upgrade 154

TEC to OMNIbus 154
upgrading 165
UPS_Fan_Down 215
UPS_Temp_Degraded 199, 208, 216
User Interface Server 44
Users, Roles and Groups 72
UseStateCorrelation 194

V
variable _rc 207
View Builder 29
View builder 30
Virtual ObjectServer configuration 76
VisiBroker Object Request Broker (ORB) 82
VMware 122

W
WAAPI 74
Web Administration Application Programming Inter-
face (WAAPI) 74
Web Console 140
Web material 399
WebSphere 92
WebSphere Console Server 44
Webtop 136, 185
wgetsub 106
Windows 49
windows adapter 108
Windows NT Event Log 161
Windows NT event logs

probe installation 183
wlookup 106
wls 106
wlsac 106
wlscurrb 126–127
wlsesvrcfg 363
wlsinst 369
Working Queue 139
wpostemsg 48, 108, 191, 195, 207, 210, 236, 244
wpostzmsg 48, 109
wrb 126, 279
wrimtest 363
wtdbclear 48, 372

wtdumper 48, 363
wtdumprl 48, 108, 144, 363, 372

 Index 425

426 Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus Upgrade

Best Practices for IBM Tivoli
Enterprise Console to

Best Practices for IBM Tivoli
Enterprise Console to
Netcool/OMNIbus Upgrade

Best Practices for IBM Tivoli Enterprise Console to Netcool/OMNIbus

Best Practices for IBM
Tivoli Enterprise
Console to

Best Practices for IBM
Tivoli Enterprise
Console to

®

SG24-7557-00 ISBN 0738485292

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Best Practices for IBM
Tivoli Enterprise Console
to Netcool/OMNIbus

Integration and
upgrade strategies
for TEC-based
environments

Provides detailed
guidelines for
planning an upgrade

Includes upgrade
scenarios and best
practice
recommendations

The acquisition of Netcool Inc. brings new opportunities for
all involved in IBM Systems Management and the
development of a new and exciting strategy. All existing
customers who have Tivoli and Netcool products will be
looking for IBM direction and guidance on the methods to join
these two Systems Management product portfolios together
in ways that maximize value.

This IBM Redbooks publication should be used in planning
and implementing an integration and upgrade strategy from
TEC to OMNIbus. In this book we provide recommended best
practices and describe strategies for upgrading existing
installations in a way that should best suit the needs of
existing TEC-based environments.

The audience for this book is anyone involved in the Systems
Management discipline, but it applies primarily to both those
with a Tivoli or Netcool background, and is aimed at
customers with an existing Tivoli Enterprise Console
investment who are looking to evaluate the comparative
characteristics of TEC and Netcool/OMNIbus so that they can
perform a system upgrade at some point in the future.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Acknowledgements
	Become a published author
	Comments welcome

	Part 1 Overview
	Chapter 1. Introduction
	1.1 IBM Service
	1.2 Netcool/OMNIbus
	1.3 Tivoli Enterprise Console customer choices
	1.4 Product review
	1.4.1 Event management
	1.4.2 Event sources
	1.4.3 Event visualization
	1.4.4 Product administration and configuration
	1.4.5 Integration with other products
	1.4.6 Netcool/OMNIbus

	1.5 Benefits of upgrading to Netcool/OMNIbus
	1.5.1 Scalability and performance
	1.5.2 Consolidation
	1.5.3 Ease of use
	1.5.4 Reliability
	1.5.5 Enhanced event visualization and management
	1.5.6 Enhanced event enrichment
	1.5.7 Security
	1.5.8 IBM product strategy

	Chapter 2. Architecture
	2.1 Tivoli Enterprise Console architecture
	2.1.1 Typical installation
	2.1.2 Describing TEC components
	2.1.3 Complex scenarios
	2.1.4 TEC integration

	2.2 IBM Tivoli Netcool/OMNIbus architecture
	2.2.1 Architecture introduction
	2.2.2 Architecture overview
	2.2.3 Component description
	2.2.4 Probes
	2.2.5 Monitors
	2.2.6 Gateways
	2.2.7 Netcool/Webtop
	2.2.8 Netcool GUI Foundation
	2.2.9 Typical Netcool/OMNIbus deployment
	2.2.10 Two-tiered architecture
	2.2.11 Three-tiered architecture
	2.2.12 Firewall considerations
	2.2.13 Configuring hardware for performance
	2.2.14 Netcool/OMNIbus rules: best practices for performance

	Part 2 Strategies
	Chapter 3. TEC environmental assessment and planning guidelines
	3.1 End-to-end event flow
	3.2 Event source hosts
	3.2.1 Tivoli framework commands
	3.2.2 Non-framework commands
	3.2.3 Other techniques
	3.2.4 Safety net

	3.3 TEC source types
	3.3.1 IBM Tivoli Monitoring event sources
	3.3.2 Omegamon agent sources
	3.3.3 NetView event sources
	3.3.4 NetView forwarding to OMNIbus options
	3.3.5 Windows event log messages
	3.3.6 UNIX and Linux syslog messages
	3.3.7 Logfile messages
	3.3.8 SNMP traps
	3.3.9 AS400 messages
	3.3.10 Command line sources (w)postemsg and (w)postzmsg
	3.3.11 Custom EIF applications
	3.3.12 Tivoli Business Systems Manager (TBSM 3.1)

	3.4 Other planning considerations
	3.4.1 Deployment considerations
	3.4.2 Scoping volumes and throughput of events
	3.4.3 Coping with event storms
	3.4.4 TCP/IP port usage
	3.4.5 EIF probe considerations
	3.4.6 Adapter configuration files and gateway configuration files

	3.5 Distributed event processing
	3.5.1 Formatting
	3.5.2 Filtering
	3.5.3 State correlation engine (SCE) processing

	3.6 BAROC file definitions
	3.7 Central event processing (TEC rules)
	3.7.1 Frequently used rules
	3.7.2 Typical rule types
	3.7.3 Remote procedure execution

	3.8 Some event-processing examples
	3.8.1 General suggestions
	3.8.2 Handling of duplicate events
	3.8.3 Filtering out events with specific content
	3.8.4 Actions for too many events in a defined time frame
	3.8.5 Filling an attribute dependent on another field’s content
	3.8.6 Handling of correlations (cause, effect, and clearing events)
	3.8.7 Local and remote script execution
	3.8.8 Escalation of the severity of events
	3.8.9 Forwarding of events

	3.9 TEC outputs
	3.9.1 TEC tasks
	3.9.2 Forwarding to other TEC servers (manager of managers)
	3.9.3 Incident management systems
	3.9.4 Service-level reporting and auditing databases

	3.10 Desktop upgrade (TEC console)
	3.11 Event view customization
	3.11.1 TEC information button
	3.11.2 TEC custom buttons
	3.11.3 Large event messages (greater than 255 characters)
	3.11.4 Operator actions
	3.11.5 Color patterns

	3.12 Resource considerations skills
	3.12.1 Event-processing configuration
	3.12.2 Installation, administration, and operations

	3.13 Checklist
	3.14 Suggested testing plan

	Chapter 4. Upgrade strategies
	4.1 Event flow integration based on TEC
	4.2 Event flow integration based on OMNIbus
	4.3 TEC replacement strategy
	4.3.1 Event flow
	4.3.2 Advantages
	4.3.3 Disadvantages
	4.3.4 Which scenarios this applies to

	4.4 TEC to OMNIbus upgrade
	4.4.1 Event flow
	4.4.2 Advantages
	4.4.3 Disadvantages
	4.4.4 Who this applies to

	4.5 The recommended strategy

	Part 3 Implementation
	Chapter 5. Upgrading to an IBM Tivoli Netcool environment
	5.1 Tivoli Enterprise Console prior to upgrade
	5.1.1 Installed TEC components
	5.1.2 TEC installation and configuration

	5.2 Netcool/OMNIbus lab environment
	5.2.1 AIX lab environment for Netcool/OMNIbus
	5.2.2 Red Hat environment for Netcool/OMNIbus

	5.3 Netcool/OMNIbus installation
	5.4 IBM Tivoli Netcool/OMNIbus configuration
	5.4.1 ObjectServer database initialization
	5.4.2 ObjectServer interfaces omni.dat
	5.4.3 Interfaces file generation
	5.4.4 ObjectServer properties configuration
	5.4.5 Process Automation configuration
	5.4.6 ObjectServer startup
	5.4.7 ObjectServer shutdown

	5.5 IBM Tivoli Netcool probe installation overview
	5.5.1 What you need to know about nco_patch
	5.5.2 Toggle feature for process control
	5.5.3 Installation of probe for Windows NT event logs
	5.5.4 Check the probe installation
	5.5.5 Netcool probe configuration

	5.6 Installing Netcool Security Manager and Netcool Webtop

	Chapter 6. Event processing
	6.1 Differences between TEC and OMNIbus
	6.1.1 Resolving of events
	6.1.2 Processing of events

	6.2 Event processing migration
	6.2.1 General suggestions
	6.2.2 Lab environment
	6.2.3 Handling of duplicate events
	6.2.4 Filtering out events with specific content
	6.2.5 Actions for too many events in a defined time frame
	6.2.6 Filling an attribute dependent on another field’s content
	6.2.7 Handling of cause, effect, and clearing events
	6.2.8 Propagating status change from cause to effect events
	6.2.9 Local and remote script execution
	6.2.10 Escalation of event severity
	6.2.11 Forwarding of events
	6.2.12 Use of external information for logic control

	6.3 Probe topics
	6.3.1 Measuring load and numbers of events in a time frame
	6.3.2 Self monitoring
	6.3.3 Parsing failed
	6.3.4 EIF rules file and extended attributes

	6.4 Support of TEC class hierarchy
	6.5 TEC information/URL information for events
	6.5.1 Rule best practices for performance
	6.5.2 Debugging using Netcool IDE
	6.5.3 Netcool Knowledge Library

	Chapter 7. Configuring the event sources
	7.1 Adding a rule to forward raw events to OMNIbus
	7.2 Integration between Netcool/OMNIbus and Tivoli NetView
	7.2.1 Netcool/OMNIbus 7.2 and Tivoli NetView integration overview
	7.2.2 Installing Netcool/OMNIbus probe for Tivoli EIF
	7.2.3 Configuring OMNIbus ObjectServer
	7.2.4 Configuring the Tivoli EIF probe
	7.2.5 Configuring the NetView TEC adapter to send to the EIF probe
	7.2.6 Automatic event management customization

	7.3 Integration between Netcool/OMNIbus and IBM Tivoli Monitoring
	7.3.1 Netcool/OMNIbus 7.2 and IBM Tivoli Monitoring 6.2 integration
	7.3.2 Installing Netcool/OMNIbus probe for Tivoli EIF
	7.3.3 Installing event synchronization
	7.3.4 Configuring the OMNIbus server
	7.3.5 Configuring the monitoring server

	7.4 Deduplication configuration
	7.5 Migrating the TEC Windows event log adapter
	7.5.1 Installing and configuring the Windows NT Event Log probe
	7.5.2 Installing and configuring the process agent on Windows

	7.6 Syslog probe event configuration
	7.7 Completed upgrade
	7.8 Troubleshooting the event flow

	Part 4 Appendixes
	Appendix A. Lab configuration
	TEC installation steps
	TEC event source generation commands and scripts
	Netcool/OMNIbus directory structure reference
	IBM Tivoli Netcool default port usage
	IBM Tivoli Netcool/OMNIbus
	IBM Tivoli Netcool Security Manager
	IBM Tivoli Netcool/Webtop
	IBM Tivoli Netcool probes

	User profile
	Netcool Process Automation startup script
	ObjectServer WEIMAR_PA Process Automation configuration
	ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView)
	ObjectServer WEIMAR probe nco_p_tivoli_eif rules (TEC, NetView, ITM)

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Online resources
	Tivoli Netcool/OMNIbus technical information
	Release notes
	Installation and deployment guide
	Administration guide
	User guide
	Probe and gateway guide
	IBM Tivoli Netcool/Security Manager
	IBM Tivoli Netcool/Webtop
	IBM Tivoli Netcool GUI Foundation

	IBM Tivoli Netcool tools and utilities
	Using IBM Tivoli Include Library
	Global Advanced Technology team tools and utilities

	How to get Redbooks
	Help from IBM
	RSS feed list

	Index
	Back cover

